
25990-HO25-RO-O0
 

,NASA CR-

TRW NOTE NO. 74-FMT-937
 

tO 
a) 02 JSC/TRW TASK 531 

rl 
04 
>4 

HEl 

C) 
0 

i-I 
U 
to 

LEVEL IIMDAS PROTOTYPE MONITOR 

PROGRAM DOCUMENT 

(PART II) 

-- Id> 

U) t 14 June 1974 

04 

oco 

I 1 
r' Z 

M 4 

4 CD 

Prepared for 

Mission Planning and Analysis DivisionC 
National Aeronautics and Space Administration 

Johnson Space Center 
ostn Texas 

d > 

10 

SAS 9-.13834 

Prepared by -


Systems Evaluation Department
 



25990-HO25-RO-O0
 

TRW NOTE NO. 74-FMT-937
 

JSC/TRW TASK 531
 

LEVEL IIMDAS PROTOTYPE MONITOR
 

PROGRAM DOCUMENT
 

(PART II)
 

14 June 1974
 

Prepared for
 

Mission Planning and Analysis Division
 
National-Aeronautics and Space Administration
 

Johnson Space Center
 
Houston, Texas
 

NAS 9-13834
 

Prepared by
 
Systems Evaluation Department
 

L. Ellisor, Jr., Tak Manager
JSC/TRW Task 531
 

R. K. Petersburg, Manager( 
Systems Evaluation Depart ent
 

Assistant Project Manager
 
VMMPS
 
Mission Trajectory Control Program
 



Table of.Contents 

Date Delivered Page 

4/30 1. Resident l.1-1 
4/30 2. Monitor Boot Logic 2.1-1 

3. User Communications 

5/31 3.1 MDBCDI 3.1-1
 

5/31 3.2 MDBCI2 3.2-1
 
5/31 3.3 MDCDAT 3.3-1
 
-5/31 3.4 MDCONV 
 3.4-1
 
5/31 3.5 MDPCK 3.5-1
 
4/30 3.6 MDPRMH 3.6-1
 

4/30 -3.7 MDPRMI 3.7-1
 
4/30 3.8 MDPRMR 3.8-1
 

5/31 3.9 MDPRMT 3.9-1
 

5/31 3.10 MDSCAN 3.10-1
 
5/31 3.11 MDSqZB 3.11-1
 

4. Storage Monitor
 

5/31 4.1 MDELET 4.1-1
 
5/31 4.2 MDENTR 4.2-T
 

5/31 4.3 MDFIND 4.3-1
 
5/31 4.4 MDGET 4.4-1
 
5/31 4.5 MDPACK 4.5-1
 
5/31 4.6 MDPUT 4.6-1
 

5/31 4.7 MDRADI 4.7-1
 
5/31 4.8 MDROLL 4.8-1
 

5. Execution Controller
 

5/31 5.1 MDALOC 5.1-1
 
4/30 5.2 MDCMTG 5.2-1
 

4/30 5.3 MDCMTV 5.3-1
 

5/31 5.4 MDMERG 
 5.4-1
 
5/31 5.5 MDPRT 5.5-1
 
6/14 5.6 MDSMON 5.6-1
 



Date ,Delivered 


4/30 


4/30 


4/30 


4/30 


4/30 


5/31 


5/31 


5/31 


5/31 


5/31 


5/31 


5/31 


5/31 


5/31 


5/31 


5/31 


5/31 


5/31 


4/30 


4/30 


4/30 


4/30 


5/31 


5/31 


4/30 


5/31 


4/30 


6/14 


6/14 


6/14 


Table of Contents (Continued)
 

Page
 

6. Command Table Editor
 

6.1 MDCMNT 6.1-1
 

6,2 MDCMT 6; 2-1
 
6.3 MDCMTL 6.3-1
 

6.4 MDCMTS 6.4-1
 
6.5 MDVCMD 6.5-1
 

7. Control Table Editor
 

7.1 MDALST 7.1-1
 

7.2 MDCNT 7.2-1
 

7.3 MDCNTE 7.3 1
 

7.4 MDCNTS 7.4-1
 

7.5 MDCONT 7.5-1
 
7.6 MDDEFN 7.6-1
 

7.7 MDEDIT 7.7-I
 

7.8 MDSPEC 78-1
 
8. Utility Routi.... 

8.1 MDALCT 8.1-1
 

8.2 MDCTPK 8.2-1
 

8.3 MDGETC 8.3-1
 
8.4 MDLIST 8.4-1
 

8.5 MDLKUP 8.5-1
 
8.6 MDLSTH 8.6-1
 

8.7 MDLSTI 8.7-1
 

8.8 MDLSTO 8.8-1
 

8.9 MDLSTR 8,9-1
 

8.10 MDPUTC 8.10-1
 

8.11 MDQUIT 8.11-1
 

8.12 MDSMTW 8.12-1
 

8.13 MDSPLT 8.13-1
 

8.14 MDTOC 8.14-1
 

8.15 MDUTIL 8.15-1
 

8.16 SEARCH 8.16-1
 
8.17 SORT2 8.17-1
 



Table of Contents (Continued)
 

Date Delivered Page
 

9. Library Maintenance
 

5/31 9.1 DCTMOD 9.1-1
 

4/30 9.2 MDADDR 9.2-1
 
5/31 9.3 MOBULD 9.3-1
 
5/31 9.4 MDGENR 9.4-1
 

10. IMS Interface
 
5/31 10.1 1DIMS 10.1-1
 

11. -Access Control
 
5/31 11.1 MDLOGO 11.1-1
 

6/14 11.2 MDELAC 11.2-i
 

5/31 Appendix A - Cross Reference A-i
 

6/14 Appendix B - Common Blocks B-1
 



LEVEL II MDAS PROTOTYPE MONITOR
 

PROGRAM DOCUMENT
 

(PART II)
 

1. 	Introduction 

The purpose of this document isto provide detailed information about 

each subroutine contained in the monitor. This information is provided at 
a level such that programers may become familiar with the design and 

techniques used to implement each component described in Part I of this 
document. However, flow charts are not provided for the extremely simple 

routines. This document is not intended to describe the user interface and 

should not be used as such. For this type of information see the "User's 
Guide for the Level IIMission Design and Analysis Subsystem (MDAS) Prototype" 

Inorder to facilitate the reading of the flow charts contained herein 
the following convention was adopted for off page connectors. Each connector 

will contain a letter and a number, separated by a slash. The letter 

uniquely determines a destination and the number(s) refers to the page of 
the flow chart where the referenced connector is located or-from where this 

connector is referenced. For example, .. would indicate 
the program flow is continued at connector A on page 2 of the flow chart. 

On page 2 we might find (A/D,3)_... which indicates that this
 
portion of the routine may be entered from either page 1 or page 3 of the
 

flow.
 

This document describes the routines contained in the baseline program
 

as delivered to JSC/MAB on 28 December 1973 on the CSC INFONET system.
 

REPRODUCIBILITY OF THE
ORIGINAL PAGE IS POOR 



MDAS Resident
 

The resident is the only program logic which is continuously present in
 

memory during an MDAS session. It contains minimal logic to load and execute,
 
and if required, scan the required processors and reload and return control
 

to the submonitor.
 

Processing
 

Inputs All communications with the resident are via the intramonitor
 
communications area. There are three classes of information used for pro­
cessor loading 1) the library catalog, 2) processor calling sequence data,
 
and 3) scan control values, all of which are described in Appendix C.
 

In addition to these inputs, the resident accesses the library files (Part I,
 
Section 6) and reads the contents into the processor swap area as required.
 

Method The resident invokes the INFONET basic file services package LRS
 

(Logical Record-Services) which is system resident and thus external to the
 
MDAS region to perform all input/output functions. A major portion of the
 

resident code is directed toward manipulating the LRS file control blocks
 

(UCB's, unsanctioned control blocks, and OCB's, operations control blocks).
 
All communications with LRS is via these control blocks which must contain
 

such parameters as file name and'version, record length,.buffer origin and
 
length, access codes, file organization keys, etc.
 

The resident uses the catalog entry number to access the file name/version
 
and origin and length data for the processor to be executed. This information
 

is stored in the LRS control blocks, the file opened, and the input of the
 

instruction bank (record) of the processor started. While the record is
 
being loaded by LRS, the resident constructs the processor calling sequence if
 

any. (The submonitor, loaded in a similar fashion, has no calling sequence).
 

Tne absolute addresses of the calling arguments are computed by adding
 
the origin address of BLANK COMMON to the relative common address of the argu­

ments as returned by the submonitor. A transfer instruction to the post pro­

cessor execution logic is placed after the last argument address since this
 

is the point of return following processor execution.
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After the instruction bank input is complete, the data bank (record) is
 

loaded and control is transferred to the processor. This sequence is repeated,
 

alternating between processor loading and submonitor loading unless the sub­

monitor indicates that a parametric scan of processor inputs is to be performed.
 

Scans are performed with a single processor loading as follows:
 

1) The processor inputs will have been defined by the submonitor such 

that the scan centroid point will be evaluated on the initial 

execution. The associated data box file will also have been opened 

and identification records output to it. 

2) The resident will copy-the complete summary table (name, units, and 

summary vectors) to the data box file. Adjustment of the input 

parameters to the (Xl, Y,) point will then be accomplished and the 

processor re-executed. 

3) Each subsequent return from the processor will be followed by 

copying the summary vector to the data box file and the scan 

parameters incremented such that the sequence (X2, Y1), (X3, Y1) 

(Xn' Y1 , (X1, Y2) . (X,, Ym) iscompleted. 

4) In order that all output quantities of the processor will be left 
with values corresponding to the centroid point, the resident 

deactivates the scan, closes the data box file, resets the scan 

parameters to the centroid values, and executes the processor a 

final time. 

Normal MDAS termination is accomplished by the transfer of control to the
 

system directly from the submonitor.
 

Outputs Aside from fatal error messages the only outputs from the resi­

dent are the summary table contents of data box files and the deactivating of
 

the scan activation flag.
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USAGE
 
THE MDAS RESIDENT IS ENTERED FROM THE BOOT LOGIC By THE FOLLOWING
 
SEQUQUENCE OF ASSEMBLY LANGUAGE OPERATIONS
 

STORE ASCII NAME OF FUNCTION TO BE LOADED IN PRONAM
 
LOAD REGISTER BID WITH PROTAB OFF SET MINUS ONE OF THE
 

FUNCTION I-BANK LENGTH AND ADDRESS WORD
 
JUMP TO LABEL INTIIN IN THE RESIDENT
 

EXTERNAL REFERENCES
 
ECLOSS TO'CLOSE FILES
 
ECTSOS TO OUTPUT TO TERMINAL
 
ELRSRS To READ LOGICAL RECORDS
 
ELRSWS TO WRITE LOGICAL RECORDS
 
EOPENS TO OPEN FILES
 
EROOLS To TERMINATE EXECUTION
 
EWAITS TO WAIT FOR ASYNCHRONUS READ COMPLETION
 
MDADDR FOR LIBRARY MAINTENANCE
 
MDSMON TO PERFORM MONITOR FUNCTIONS
 
SUBSYSTEM PROCESSORS AS REQUESTED By USER
 

DIAGNOSTICS
 
D B WRITE ERRORs ID IN Al
 

THE CURRENTLY ACTIVE DATA BOX FILE CAN NOT BE COMPLETED
 
BY WRITING OF SUMMARY VECTOR* THE SYSTEM RETURN CODE 15
 
CONTAINED IN REGISTER Al.
 

PROC 	READ ERROR, ID IN Al
 
THE REQUESTED PROCESSOR LOAD MODULE FILE CAN NOT BE
 
READ, THE SYSTEM RETURN CODE IS CONTAINED IN REGISTER
 
Al. 

EXTERNAL STORAGE
 
THE LOAD MODULE FILES OF THE SUBMONITOR DESIGNATED PROCESSORS
 

AND THE SUBMONITOR ARE ACCESSED FOR READ AND CLOSED.
 
THE DATA BOX FILES OPENED AND INITIALIZED BY THE SUBMONITOR
 

ARE COMPLETED AND CLOSED.
 

BLANK COMMON 

VARB I/O 

ARGADD I 
CENTX I 
CENTY I 
DBOCB I/O 
DBUCB I 
DBSVLN I 
INITX 
INITY 

I 
I 

REpRODUC]BIfLT OF THV 
NUMARG 1/0 ORGINAL PAGE IS POOR 
N2X I 
NZY I 

PRONAM I 
PRONUM I 
PROTAB I 
SCANF I/0 
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YARP 

XINC 
lNc 

WORKX 
WORKY 

ip 

I
I 
1/0 
1/0 

LOCAL COMMON 
NONE 
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Boot Logic (MDAS)
 

The purpose of the boot logic (entry point MDAS) is to perform sufficient,
 

one time initialization to bring the subsystem up for a user session. The
 

basic tasks involved are the input of the library catalog from mass storage
 

into the intramonitor communications area and the initializing of the resi­
dent/submonitor communications link such that transfer of control to the
 

resident will cause it to load and execute the appropriate monitor function,
 

Processing
 

Inputs The only input to the boot logic is the library catalog which resides
 

in mass storaqe file MDTABL.MD. This catalog and its associated header record
 
are loaded into the intramonitor communications-area (see Appendix C for
 

locations).
 

Method The boot logic invokes the INFONET basic file services package
 

LRS (Logical Record Services) which is system resident and thus external to
 
the MDAS region to perform all input/output functions. A major portion of
 
the code is directed toward manipulating the-LRS file control bl'ocks (UCB's,
 
unsanctioned control blocks, and OCB's, operations control blocks). All,
 

communications with LRS is via these control blocks which must contain such
 
parameters as file name and version, record length, buffer origin and length,
 

access codes, file organization keys, etc.
 

The catalog file is opened and the three word header record input.
 
These words containsize and pointer data to the remaining portions of the
 

catalog. (Table 2-1 depicts the general structure, content and definitions
 

of the catalog file MDTABL.MD.). From the header information the total
 
space required for reading the catalog into memory is computed and tested
 

against the size available.
 

The catalog used on the previous MDAS execution, referred to as the old
 
catalog record, is input followed by any new processor entries into the
 

catalog generated by the maintenance program MDGENR. As indicated in
 

Appendix C, the remaining portion of the intramonitor communications area
 

is reserved for an ephemeris data buffer and the storaqe monitor table (SMT);­
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thus the boot logic sets the origin of the buffer to the next available
 

address following the catalog and the origin of the SMT folloving the fixed
 

length buffer.
 

After the catalog input and associated allocations are accomplished, the
 

boot logic primes the communications link to the resident to cause loading
 

of the appropriate monitor function. There are three possibilities.
 

If no changes have been made to the library and catalog the submonitor
 

(MDSMON) will be queued for loading. The necessary control block data is
 
found inwords two and three of the first catalog entry.
 

If MDGENR has modified the library and catalog the maintenance processor
 

(MDADDR) must be loaded to reorganize the catalog and build or modify the
 

default control tables for the affected processors. The necessary control
 
block data is found in words four and five of the first catalog entry pro­

vided that MDADDR itself has not been modified.
 

The third possibility for monitor function loading is the invoking of
 

a new version -of MDADDR. This is detected by the presence of a non-zero
 

value in the third word of the catalog header record. In such cases this
 
value is the record number of the new catalog entry record corresponding to
 
the revised MDADDR. To queue this function the associated control block data
 

in words two and three of the new entry are referenced.
 

Before transferring control to the resident, the adequacy of the swap
 
area region sizes is verified to insure proper loading of the queued
 

function by the resident.
 

Outputs The appropriate portions of the intramonitor communications
 

area are initialized as described and a monitor function is queued for loading
 
by the resident. Several diagnostics related to detection of fatal errors
 

may be output by the boot logic.
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USAGE
 
ENTRY MDAS
 

EXECUTE THE GPS COMMAND !MDAS
 

EXTERNAL REFERENCES
 

MOAS 	RESIDENT
 

D.IAGNOSTICS
 
CATALOG SIZE *.o. TO LARGE FOR PROTAB o,.o
 

THE MDAS LIBR'ARY CATALOG FILE WILL NOT FIT IN THE
 
INTRAMONITOR COMMUNICATIONS AREA-AS PRESENTLY
 
CONFI.GURED. EDIT MDAS-PNC TO REVISE THE VALUE OF CRES
 

APPROPRILATELY AND REASSEMBLE AND LINK MDAS. 

EXTENT OF o.e. (oooot,o ) IS TOO LARGE FOR CURRENT MDAS 

CONFIGURATION .,*,.**,) 
THE INDICATED LOAD MODULE (MDSMON OR HDADOR) REQUIRES
 

A SWAP AREA LARGER THAN THE ALLOCATED REGIONS.
 

DETERMINE THE REQUIREMENTS. EDIT MDAS.PNC TO REVISE THE
 

VALUES OF IRES AND ORES APPROPRIATELY AND REASSEMBLE AND
 
LINK MDAS.
 

INIT 	READ ERROR, ID IN Al
 
THE BOOT 'LOGIC WAS UNABLE TO READ THE LIBRARY CATALQG
 
FILE MDTABL.MD. THE SYSTEM RETURN CODE IS CONTAINED IN
 
REGISTER Al.
 

EXTERNAL STORAGE
 
THE LIBRARY CATALOG FILE MDTABL.MD IS 'OPENED, ACCESSED FOR
 

READ AND CLOSED.
 

BLANK COMMON
 

IN ADDITION TO THE FOLLOWING VARIABLES, THE BoOT-LOGIC ITSELF
 
IS CONTAINED IN BLANK COMMON. IT CAUSES ITS OWN DESTRUCTION
 
TO OCCURE WHEN THE FIRST LOAD OF THE MONITOR IS ACCOMPLISHED
 
BY THE RESIDENT.
 

VARB I/O
 

DBSTRT 0
 
EPHLEN I
 

EPSTRT 0
 
FIXCOM I
 
NTRY 0
 
PRONAM 0
 

PROTAB 0
 
PTABKY 0
 

LOCAL COMMON
 
NONE
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-S-

INumber of Number of Entry #of Header Record 
old entries new entries new MUADDR 

1-bank length D-Lank length IIDADDR I-bank rIDADDR D-bank
Submonitor 


and origin length & origin
name (MDSMON) and origin length & origin 

Processor Processor
Processor Processor Processor 

D-bank lengths default control revision
 names in 1-bank lengths 


alphabetical and origins and origins table and argu- number
 
order 
 ment definition
file lengths
 

Old Catalog Record
 

[Ne ocessori I-bank length - -bank lengthT) 
name and origin and origin
 

MOADDR II-banklength f-bank length
 
and origin and origin
 

*00 

New processor I-bank length D-bank length 
name and origin and origin
 

New Catalog Entry Records
 

Table 2-1 Organization of the Library Catalog File MDTABL.MD
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MDBCDI - User Communication
 

MDBCDI converts a BCD number to a binary integer and entry point MDIBCD
 
converts a binary integer to a BCD number.
 

Method
 

Input: 
 The inputs to MDBCDI are BCD numbers, one character per word to
 
be converted, and the number of characters to convert. 
The inputs to entry
 
point MDIBCD are the binary integer and the number of words available in the
 
output array.
 

Processinq: Routine MDBCDI converts BCD numbers to a binary integer.
 
The BCD characters are input one character per word. 
MDSQZB is called to
 
remove blanks from input string. MDBCDI checks each word for a digit (0 - 9).
 
If the word does not contain a digit, an error flag is set to the negative
 
of the subscript word number in 
error and the routine returns. The input
 
number of words, i.e., 
BCD numbers, in the input array are converted to a
 
binary output integer and the routine returns. MDBCDI performs the same
 
function 
as MDBCD2 except MDBCD2 does not allow intervening blanks in the
 
input character string.
 

Entry point MDIBCD converts a binary integer to a BCD number which is
 
returned one character per word in the output array. The number of words
 
left unfilled is output or if the number of digits exceed the available
 
words, the negative of that number is output.
 

Output: The output from MDBCDI are the binary integer and an error flag
 
if a digit or blank was not input in the BCD array. The outputs-from MDIBCD
 
are BCD numbers one character per word and the number of unfilled words or
 
the negative of the extra words needed.
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USAGEENTRY 
MDBCDI
 

CALL MOBCDI (NCOLINTN)
 

ARGMT I/O TYPE DIM DEFINITION
 

NCOL I I N ARRAY CONTAINING BCD NUMBERt 

ONE CHARACTER PER WORD 

INT 0 1 BINARY INTEGER 
N 1/ 1 1 NUMBER oF BCD WORDS INPUT 

IF A NON-DIGIT WAS INPUT IN ARRAY 

NCOL, ON OUTPUT N WILL BE A NEGATIVE 
VALUE WITH THE MAGNITUDE BEtNG THE 

SUBSCRIPT OF THE INCORRECT ORD 

ENTRY MOIBCD
 
CALL MOIBCD CNCOLINTN)
 

ARGMT 1/O TYPE DIM DEFINITION
 

NCOIL 0 r N ARRAY CONTAINING BCD NUMBERe
 

ONE CHARACTER PER WORD
 
INT I I I BINARY INTEGER-

N I/O I I NUMBER OF WORDS AVAILABLE Ib NCOL
 

ON OUTPUT IT IS THE NUMBER nF
 
UNFILLED WORDS OR THE NEGATtVE OF THE
 

NUMBER oF EXTRA WORDS NEEDEn IF NCOL
 

IS OVERFLOWED
 

EXTERNAL REFERENCES
 
MDSQZB
 

RESTRICTIONS
 

I* INPUT BCD ARRAY MUST CONTAIN ONLY- DIGITS OR BLANrS
 
2 .OUTPUT BCD ARRAY MUST BE LARGE ENOUGH TO CONTAIN BCO
 

NUMBERS
 

DIAGNOSTICS
 
NONE
 

EXTERNAL STORAGE
 
NONE'
 

BLANK COMMON
 
NONE
 

LOCAL COMMON
 
NONE
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Multiply the integer binary 
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and store as the new integer
 
binary number
 

No- Hv
Inreen ndex int 


Haeal N Increment indexin 

H l e i h i i sarray containing 

been checked Hollerith digits 

Set error flag (set the 
input number of BCD numbers 
to the negative values with 

a magnitude being the sub­
script of the incorrect word) 

R 

MDBCDI Flow Diagram 
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__GP
 

Extract each digit beginning
 
with the least significant
 
to the most siqnificant
 

Place the corresponding
 
Hollerith value of each digit
 
in the outout array from the
 

-last position to the first
 

digits exist than
 
BCD words
 

Yes 

Output the negative
 
value of the extra
 
words needed
 

- MDIBCD Flow Diagram 
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MDBCI2 - User Communication
 

MDBCI2 converts a BCD number to a binary integer
 

Method
 

Input: The inputs to MDBCI2 are BCD numbers one character per word to
 

be converted and the number of characters to convert
 

Processing: BCD characters ate input one character per word. MDBC12
 

checks each word for a digit (0 - 9). If the word does not contain a digiL,
 

an error flag is set to the negative of the index to the word in error
 

and the routine returns. The input number of words, i,e., BCD numbers in
 

the input array, are converted to a binary output integer and the routine
 

returns. MDBCI2 performs the same function as MDBCDI except MDBCDI allows
 

intervening blanks in the input BCD character string.
 

Output: The outputs from MDBCI2 are the binary integer and an error
 

flag if.a non-diqit was-input in the BCD array.
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USAGE ENTRY MDBCI2 

CALL MDBCI2 (NCOLINTN) 

ARGHT I/O TyPE DIM DEFINITION 

NCOL I I N ARRAY CONTAINING BCD NUMBERC 

ONE CHARACTER PER WORD 

INT 0 I I BINARY INTEGER 

N 1i0 1 1 NUMBER oF BCD WORDS INPUT 

IF A NON-DIGIT WAS INPUT IN ARRAY 

NCOL, ON OUTPUT N WILL BE A NEGATIVE 

VALUE WITH THE MAGNI-TUDE BE;NG THE 

SUBSCRIPT OF THE INCORRECT ,ORD 

EXTERNAL REFERENCES
 
NONE
 

RESTRICTIONS
 
Is INPUT BCD ARRAY MUST CONTAIN ONLY DIGITS O-9).
 

DIAGNOSTICS
 
NONE
 

EXTERNAL STORAGE
 
NONE
 

BLANK COMMON
 
NONE
 

LOCAL COMMON
 
NONE
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MDBCI2
 

Initialize output binary­
number to zero
 

Initialize index into input
 
BCD number array
 

_I 
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Multiply the integer binary
 
number by 10 and add the digit
 
and store as the new integer
 
binary number
 

Set error flag (set the 
input number of BCD numbers 

Increment index into No Have to the negative value with 
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numbers been 

a magnitude being the sub­
script of the incorrect word 

checked 

MDBCI2 Flow Diagram
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MDCDAT - User Communications
 

The purpose of MDCDAT is to interpret free field card input for input
 

data to the right of an equal sign.
 

Method
 

Input: Input to MDCDAT is through the calling seauence. It consists
 

of a buffer containing the user's response, the pointer to the character from
 

where processing is to begin, the number of characters in the buffer, and
 

the column number where the prompt ended.
 

Processino: MDCDAT processes data on the right side of an equal sign.
 

Integer, real, double precision, Hollerith or.octal data may be input. Values
 

that consist only of digits and prefix algebraic signs will be interpreted as
 

integer data. MDBCDI will be called to convert the BCD number to binary
 

integer before the value is stored in the output buffer. Numerical values
 

will be interpreted as real (single precision) data if they contain a decimal
 

point (.), an imbedded algebraic sign and/or the letter E. The presence of
 

an imbedded letter D in a numerical value denotes a double precision value.
 

Both single and double precision values will be processed with regards for
 

underflow and overflow. Octal values are composed of the digits 0 - 7
 

(maximum of 12 characters) prefixed by the letter 0. MDSOZB will be called to
 

remove blank character words before the octal characters are packed into one
 

computer word. Positive (+)and negative (-) signs will be processed for
 

numeric values and exponents. For each numeric type, the field designator
 

(see Appendix D), entry length and data will be stored in the output buffer.
 

Most other characters will be interpreted as Hollerith data. All data
 

enclosed by apostrophes, or by a leading apostrophe and column 73, will be
 

processed as Hollerith data. This data will be packed for output via calls
 

to MDPCK, and thus will be left justified containing six characters per word
 

with blank fill. The number of characters stored will be determined by the
 

number of columns between the delimiting apostrophes or, in the absence of
 

apostrophes, by the number of columns in the string beginning with the first
 

non-blank common and ending with the last non-blank column (imbedded blanks
 

are retained).
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Special characters $ and % are recognized by MDCDAT and will have the
 

appropriate field designator set in the output buffer. A comma (,) is rec­

ognized as a field separator while an asterisk (*)-and a backslash (\) are
 

recognized as the end of statement. A left parenthesis (()is recognized as the
 

the start of a subscript. Subscripts may contain alpha or numeric characters
 

The "$LAST" feature is processed by MDCDAT; however, it is a design feature
 

only and will not be used operationally.
 

MDCDAT makes numerous error checks, and outputs error messages when an
 

error is encountered. An up arrow () will point to the character in error.
 

Listed below are examples illustrating typical data forms:
 

0 INT = 123 * (Integer)
 

* RVAL = 1.23E1, 45E-Ol * (Real) 

* OVAL = 1.23D, 45D-01 * '(Double Precision)
 

# BIT = 01234567 * (Octal)
 

* X(l) = 1.2, (2)3.4 * (Subscript)
 

e ABC = 3R 123 * (Repeat)
 

* HD = 'HOLLERITH DATA' (BCD String) 

Output: The output from MCDATA consists of error messages, an output
 

buffer containing field designators and related data, a pointer to the end
 

of this buffer, and a flag indicating the status of its processing.
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USAGE
 
* 	 RT-RY..tDcDAT _ _ _-_ _ _ _ _ _
 

CALL MDCOAT (ICOMINENDILENPPKRBFJSTATI
 

ARGMT 	 I/O TYPE DIM DEFINITION
 

ICOM I I VARB INPUT BUFFER CONTAINING NUMERIC 
-- -- L.UIz-S-T- .vJw _ILCQN VZRTED -AND._PACKED 

I I I I STARTING CHARACTER LOCATION OF DATA 
........ . E aL. ._ .... . ... uuBEa _G CHAR-CTRs_ 4_.cam-... .. ..
 

ILENP -I I 1 NUMBER oF CHARACTERS IN PROMPT 
. .RBF-- VARB --OUTPUT- BUFFER. . 

4 I II POINTS TO THE END'OF KRBF 
- - - - --- STAT .. O .. i _. STA-T-US-.pLAG-FOR- MDCDAT PROCESSING .-. 

OUNORMAL RETURN 
........- NEGwERRoR . 

... £XTERNAL-REEERENCES ... 	 _ __ 

MDBCDI
 
PO!CK
 

MDSQZB
 

DIAGNOSTICS
 
IPGGI LZ ALLOWED
ITS_IN AN OCTAL VALUE, MAXIMUM OF 

NUMBER OF DIGITS FOR THE OCTAL VALUE EXCEEDED IZ 
--_- LLLESA _UsE-OF CHARACTER t [N -OR AFTER. CfLUMN_,t.. - - ­..
 

THE CHARACTER NAMED WAS USED ILLEGALLY IN OR AFTER
 
IM.---LUM-.NUMBER. DE&LGNkLT-E-D
 

... E.XT-ELRNAL- STORAGf._.
 
NONE
 

BLANK COMMON 

NONE 

LOCAL COMMON
 

NONE
 

ftREODUIBILITY OF THE 
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MC DAT
 

/1.3,4, 
8,9 

No 

chrctreqa 

to 

N 
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and flags 

Set 
character 

in 

field designator
entto asls found in 

output buffer 

Genxt 
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8/ 

No this the 
last character 

processed 

Set field designator 

to end of statement 
in output buffer 

I 
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0/1.,2
 

Begin scan 	of field character by character
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inee,09processed
 

Charcte~r 	 ChCharac= Character= Character = Character ater 
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"R"found-check for repeat group
 

the-first character in 
scan, an argument name or
 

Call IDBCDI to convert
 
BCD to binary integer
 

Set field designator for
 
repeat group and store
 
data into output buffer
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G/2 

"E"found-real 

H1/2 

"D"found-double precision 

this the first 
character in the scan, 
an argument name or an 

Yes 
E/2 

this the first 
character in the scan, 
an argument name or an 

Yes 
E/2 

Set field designator 

for real 

No No 

Set field designator 

for double precision 

Get exponent sign and 

iNo 
pick up exponent 

Call MDBCDI to convert BCD 

characters to binary integer 

Process exponent accountinq for 
underflow and overflow. Set 
field designator and store data 
in output buffer 
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1/2,9 

"0' - octal 

~Error message
 
A eY s"DIGITS IN AN
 

Call MIDSQZB to moveS
 

blanks out of value Seterror flag 

Set field designator Error message
 
to octal and store"ILGLUEO
 
data into output buffer
 

1IDCDAT Flow Diagram (Continued) Page 5 of 9
 

3.3-8
 



L/ 6 

" found 

Is a Ye 

Pocess subscript
 

Call MBCDI to
 
convert the BCD
 
subscript to
 

/
integer 

Print up arrow
 

!id F o under charactersubscript i r o
 

Yes
 

it' ". Yes ,Process 

this an %$LAST" "&LAST" 
- suscript subscript
 

Set field designator
 
and store data for
 
subscript
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M/2, 

Process symbols
 

Is, i 

Set field designator

to name
 

Set field desiqnator
Ifor "I"or "%" in 

output buffer
 

Call IDSOZB and
 
tIDPCK to remove
 
blanks and pack
 
data
 

Store data in'
 
output bufferi
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0/2 

II found 

Pick up BCD
 
characters
 
between
 
apostrophes
 

pchract 9esN/
 

Store field designator
 
and data in output buffer
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P/2 

Last character processed
 

Hollerit h o Yes M/bing processed 


period being-"/
 

S Octal Yes
 

vert BCD to integer
 

Set field desiqnator
 
to integer and store
 
data in output buffer
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MDCONV - User Communications
 

MDCONV converts a BCD character string to an ASCII character string.
 

Method
 

Input: The inputs to MDCONV are the BCD buffer, the number of characters
 
in that buffer to be converted, and the position in the output buffer to begin
 

to place the converted characters.
 

Processing: MDCONV determines the starting bit of the output buffer to store
 

the ASCII character and initializes the starting bit of the BCD buffer to zero.
 

For each character to be converted, MDCONV determines the word number of the
 

character in the BCD buffer and the word number to place the converted charac­

ter in the ASCII buffer. An index into an array containing ASCII code is com­

puted by extracting six bits from the BCD buffer starting at the specified
 

bit. The nine bit ASCII character is placed in the ASCII buffer. The bit
 

location of ASCII is incremented by 9 and the bit location of the BCD buffer
 

is incremented by 6. After all characters have been converted, MDCONV returns.
 

Output: The output from MDCONV is a buffer containing the ASCII charac­
ters. This buffer is not affected other than the ASCII character string has
 

been inserted.
 

3.4-1
 



USAGE
 
ENTRY HDCONV.
 

CALL MDCONY (NtBCDBuFICHARASCBUF)
 

ARGMT 1/0 Ty.PE DIM DEFINITION 

N I I I NUMBER oF CHARACTERS TO BE CONVERTED 
ScOBUF I I VARB BUFFER CONTAINING THE BCD CwARACTERS 
ICHAR I I CHARACTER POSITION IN ASCII BUFFER TO 

BEGIN OUTPUT STRING 
ASCBUF 0 1 VARB ASCII BUFFER CONTAINING THE OUTPUT 

CHARACTER STRING (NOTE: ACSmUF IS NOT 

AFFECTED OTHER THAN THE INS.RTED 
STRING) 

EXTERNAL REFERENCES
 
NONE
 

DIAGNOSTICS
 

NONE
 

EXTERNAL STORAGE
 
NONE
 

BLANK COMMON
 

NONE
 

LOCAL COMMON
 
NONE
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MDCONV
 

Set the starting bit
 
in the BCD buffer and
 
the ASCII buffer
 

Determine word number
 
in BCD buffer and ASCII
 
buffer for this character
 

Determine index into array
 
of ASCII character corres­
ponding to the BCD character
 

Store ASCII character
 
into output buffer
 

Increment bit location in
 
BCD buffer and the ASCII
 
buffer
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MDPCK - User Communication
 

MDPCK packs characters from a single character pet word array into a
 

six character per word array.
 

Method
 

Input: The inputs to MDPCK are the number of'characters to pack and
 

the array containing the characters to be packed.
 

Processing: MDPCK determines the number of words needed to pack the
 

input characters. MDPCK then loops storing six characters at a time into
 

the output array. During the store, the first bit of the first character
 

in the six character set is removed before the store and then returned after
 

the store. This is done to prevent overflow during packing. If the-last
 

word is not filled with input characters, the remaining characters in the
 

output word will be blanks.
 

Output: The outputs from MDPCK are the array containing the packed
 

characters and the number of words in that array.
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SAGE­
'ENTRY MOPCK
 

CALL MDPCK (NCAROSoLWORD,'N)
 

bEFINITION
ARGMT 1/0 TyPE DIM 

NCARDS I I VARB ARRAY CONTAINING ONE 
WORD 

CHARACTEN rLR 

LWORD 0 I VARB ARRAY CONTAINING PACKED 'CHACACTERS 

(S'IX CHARACTERS PER "W.ORD-) 

'N -I/O I 1 oN INPUT N IS THE NUHBER OF SINGLE 

CHARACTERS DI-MENSION OF N.ARDS) 

ON OUTPuT N IS THE NUMBER O WORDS 

OF PACKED CHARACTERS (SIX CUARACTERS 
PER WORD) 

EXTERNAL REFERENCES
 
NONE
 

DIAGNOSTICS
 
NONE
 

EXTERNAL STORAGE
 

NONE
 

BLANK COMMON'
 
NONE
 

LOCAL COMMON
 
NONE
 

RfEPRODUCIBILTY OF THE 
ORIGINAL PAGE IS POOR 

3.5-2
 



NDPCK
 

I s 

IIb
 

Determine the number of nacked
 

words needed for input characters
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For
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MDPRMH - User Communications
 

The purpose of MDPRMH is to prompt the user with the variable name and
 

associated Hollerith values, and to return the response.
 

Method
 

Input: The input to MDPRMH consists of a Hollerith variable name and
 

associated Hollerith values input through the calling sequence.
 

Processing: The variable name and values are stored in the buffer
 

passed to MDPRMT (which prompts the user for a response). If the number
 

of computer words exceeds the print line, then MDPRMH will print all lines
 

except the last line which will be printed by MDPRMT as the prompt for the
 

user's response.
 

Output: The output is a buffer containing the user's response and the
 

status of this output.
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USAGE
 
ENTRY MDPRMH
 

CALL MOPRMH (NAMEARRAYLENBUrFSTAT)
 

ARGMT 


NAME 

ARRAY 


LEN 


BUFF 


STAT 


1/0 TYPE DIM 

I H I 
I H VARB 

I I I 

0 I VARS 

0 1 1 

EXTERNAL REFERENCES
 
MDPRMT
 

DIAGNOSTICS
 
NONE
 

EXTERNAL STORAGE
 
NONE
 

BLANK COMMON
 
VARB 


NONE
 

LOCAL COMMON
 

VARB 


NONE
 

I/O
 

1/0 TYPE DIM 


DEFINITION
 

ITEM CONTAINS THE VARIABLE NAE
 

ARRAY CONTAINS HOLLERITH VALUES
 
ASSOCIATED WITH NAME
 

NUMBER OF WORDS CONTAINING ARRAY
 
DATA
 
BUFFER CONTAINING USER RESPONSE-

UNITS-INTERNAL 
BCD
 

STATUS FLAG FOR MOPRMH PROCESSING
 

DEFINITION
LOC. RELADO 


REPRODUCIBILITY OF TH
 
OETGINAL PAGEIS POOR
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MDPRMI - User -Communications
 

The purpose of MDPRMI is to prompt the user with the variable name and
 
associated integer values, and to return the response.
 

Method
 

Input: The input to muvrli consists or a Hollerith variable name and
 
associated integer values input through the calling sequence.
 

Processing: MDPRMI prompts the user for a response, via MDPRMT, to the
 
requested input integer values. If the number of values exceeds one print
 
line, MDPRMI prints all lines except the last one, which is sent to MDPRMT as
 

the prompt.
 

Output: The output is a buffer containing theuser's response and
 

the status of this output.
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USAGE
 
ENTRY MDPRMI
 

CALL MDPRHI (NAME.ARRAYLEN,BUFFISTAT)
 

ARGMT 1/O TYPE DIM DEFINITION
 

NAME I H I ITEM CONTAINS THE VARIABLE NAME
 

ARRAY I I VARB ARRAY CONTAINS INTEGER VALUES
 
ASSOCIATED WITH NAME
 

.LEN I I I NUMBER OF WORDS CONTAINING ARRAY
 
DATA
 

BUFF 0 
 1 VARB BUFFER CONTAINING USER RESPONSE
 
UNITS-INTERNAL BCD
 

STAT 0 1 1 STATUS FLAG FOR MDPRMI PROCESSING
 

EXTERNAL REFERENCES
 
MDPRMT
 

DIAGNOSTICS
 
NONE
 

EXTERNAL STORAGE
 
NONE
 

BLANK COMMON
 
VARB 


NONE'
 

LOCAL COMMON
 
VARB 


NONE
 

i/0
 

I/0 TYPE DIM LOC RELADO DEFINITION
 

R'EPRODUCIBILITY OF THE 
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MDPRMR.-'User Communications
 

The purpose of MDPRMR is to prompt the user with the variable name and
 

associated real values, and to return the response.
 

Method
 

Input: The input to MDPRMR consists of a Hollerith variable name and
 

associated real values input through the calling sequence.
 

Processing: If there is less than one print line of real values
 

associated with the variable name input to MDPRHR, MDPRNT is called with these
 

values to prompt the user for a response. If one line is exceeded, MDPRMR
 

prints the Hollerith name and all the values other than the igast one which
 

is.passed to MDPRMT as the prompt forthe user's response.
 

Output: The output is a buffer containing the user's response and
 

the status of this output.
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USAGE
 
ENTRY MDPRMR
 

C-ALL MDPRMR (NAMEARRAYLENBUFFISTAT)
 

ARGMT I/O TYPE DIM 

NAME I H I 

ARRAY I R VARB 

LEN I I I 

BUFF 0 1 VARB 

STAT 0 1 £ 

EXTERNAL REFERENCES
 
MDPRMT
 

DIAGNOSTICS
 
NONE
 

EXTERNAL STORAGE
 
NONE
 

BLANK COMMON
 
VARB IO
 

NONE
 

LOCAL COMMON
 

VARB I/O TYPE DIM 


NONE
 

DEFINITION
 

ITEM CONTAINS THE VARIABLE NAME
 

ARRAY CONTAINS REAL VALUES ASSOCIATED
 
WITH NAME
 
NUMBER OF WORDS CONTAINING ARRAY
 

DATA
 
BUFFER CONTAINING USER RESPONSE
 
UNITS-INTERNAL BCD
 
STATUS-FLAG FOR MDPRMR PROCESSING
 

LOC REL-ADD DEFINITION
 

REPRODUCIBIITY OF THE 
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MDPRMT - User Communications
 

The purpose of MDPRMT is to provide the submonitor prompting capability.
 

Method
 

Input: The input to MDPRMT consists of a field data character stri'ng,
 

number of characters in the string and a flag specifying the scan type.
 

Processing: MDPRMT converts the internal BCD characters to ASC II via
 

MDCONV, adds an end mark and a null character, and-prints this data as the
 

-prompt for the user. The response is read and interpreted to internal BCD 

via MDSCAN. If an up arrow "' was input, the routine will prompt with "+' 

until some other response is input before returning to the caller. 

Output: The output is a buffer containing the format of each field
 

encountered in the one line text input by the caller.
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_ _ _ _ _ _ _ _ _ _ _ 

USAGE
 
ENTRY MDPRMT
 

CALL MDPRHT (PRMTLEQUFLGINPUTSTATUS)
 

ARGMT 1/0 TYPE DIM DEFINIT'ION 
PRMT I I VAaB FiELD nATA C -

L I I I NUMBER OF CHARACTERS IN PRMT 
SEQUF LL I - I C-L-S-G LLAG 
INPUT 0 I VARB- DECODED INPUT LINE (DECODED BY
 

STATUS 0 1 I STATUS FLAG FOR MDPSMT PROCESSING
 

EXTERNAL REFERENCES
 
MDCONV
 
MDSCAN
 

DIAGNOSTICS
 
r
ABOVE INPUT LINE HAq ILLGAI rHARAC-FR ApjrA r CORRF T AND
 

REINPU.T
 
AN III-rG.AL CHARACTER WAS Fr'2ND WHEN II CHARACTER
 
STRING WAS SCANNED
 

EXTERNAL STORAGE
 
NONE
 

RIANK CnMMnN
 

rOMMON /MDCODE/A
 

APOST 0
 
ASTRSK 0
 
AT 0
 
ACKqiH n
 

COLON 0
 
COMMA n
 
DBLE 0
 
OnLLAR 0
 

EOS 0
 
__ _ __-FQUiLS n _ _ _ _ _ _ _ _ _ 

HOLL 0
 
TNTE n
 
LBSIGN 0
 
LPAR n
 

MINUS 0
 
NAME n
 

OCTAL 0
 
pECRmT -n
 

PLUS 0
 

REAL 0
 
RPAR 0
 
REPEAT 0 
SLASH 0
 
SUBS, 0
 
'pAhw n
 

REPRODUOTBTITY OF 'M 
ORMWAL PAGE IS POOR 
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TDRM
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Convert BCD string
 
to ASCII and add end
 
marker to string
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Irite the
 
message
 

Ecode response, con­
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alling
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routine user entered 
+. Change prompt
buffer to prompt user 
with + so he may enter 
the directive to be
 
performed.
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MDSCAN - User Communications
 

The purpose of MDSCAN is to scan each field of the text line and output
 

an encoded buffer. This buffer contains information relating each field
 

encountered in the text via a numerical code followed by the data values.
 

Method
 

In2u: The input to MDSCAN consists of a buffer (inBCD),number of
 

characters in the buffer, a flag specifying the scan type, and a flag con­

taining the number of characters contained in the prompt. This data is
 

input through the calling sequence.
 

Processing: MDSCAN translates the input text line into fields for the
 

output buffer. Values on the right side of an "="sign are interpreted and
 

packed into the output buffer by MDCDAT. Numeric values not following an
 

equal sign are converted via MDBCI2 to binary integer. MDPCK is called to
 

pack binary integers or alpha characters (whichever processing is occurring)
 

into a character string to be stored by MDSCAN in the output buffer.
 

For subscript values, numeric subscripts are first converted to binary
 
integer via MDBCI2 before MDPCK is called to pack these digits. Since
 

alphabetic characters do not require this conversion, MDPCK is called immed­

iately. The packed characters are then stored by MDSCAN into the output
 

buffer. Subscripts for more than one dimensional array will also be processed.
 

If the subscript request was for "&LAST", special processing will occur.
 

The handling of "&LAST" is a design feature and will not be considered in
 

detail because it will not be used operationally.
 

When MDSCAN builds the output buffer, the field designator, and entry
 

length and data (if applicable) are stored in the output buffer for each
 

field encountered. For definition of the field designators, refer to the
 

appendix. If an error occurred during processing, the status flag is set
 

to the character found to be in error. If no errors were encountered, the
 

status is set to 0.
 

Output: The output from MDSCAN consists of a buffer containing the
 

field designator and, if applicable, the entry length and data for each field
 

in the input text line (see Appendix for details). Also output is the
 

status of MDSCAN's processing. These oarameters are output through the calling
 

sequence.
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USAGE
 
ENTRY MDSCAN
 

CALL MDSCAN (INPUTNtEQUFLGPRTLENIBUFFSTAT)
 

ARGMT I/O tYPE DIM 	 DEFINITION
 

INPUT I I VARB UPON ENTRY INPUT CONTAINS A ONE LINE
 
TEXT
 

N I I I UPON ENTRY N CONTAINS THE NUMBER
 

OF CHARACTERS IN INPUT
 
EQUFLG I I I 	 UPON ENTRY EQUFLG IF \ 0 MEANS AN
 

EQUAL SIGN HAS BEEN PROMPTED AND A
 
LITERAL STRING MAY FOLLOW. OTHERWISE
 
INPUT Is A LITERAL LIST
 

PRTLEN I I I 
 UPON ENTRY PRTLEN CONTAINS THE NUMBER
 
OF- CHARACTERS IN THE PROMPT
 

BUFF 0 1 VARB ENCODED BUFFER CONTAINING THE FIELD'
 
DESCRIPTOR AND DATA FOR EACH FIELD
 
IN THE TEXT LINE
 

STAT 0 1 1 STATUS oF THE OU*TPUT.
 

OSNoRMAL RETURN
 
-LS "uGIVES THE COLUMN NUMBER OF
 

THE ERROR
 

EXTERNAL REFERENCES
 
MDBCI2
 

MDCDAT
 
MDPCK
 

DIAGNOSTICS 
NONE 

EXTERNAL STORAGE 

NON E... .... .. ... ..... -.... 

BLANK COMMON . .- . . . . ... ........ 

NONE-


LOCALNMHO --­
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. ale 
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value numeric 

? 

SPack to BCD character
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MDSOZB - User Communications
 

The purpose of MDSQZB is to removeimbedded blanks in a character string.
 

Method
 

Input: The inputs to MDSQZB are a string of characters with imbedded
 

blanks to be removed and the number of characters in that string to search
 

for blanks.
 

Processing: MDSQZB examines the specified number of characters in the
 

input string beginning with the first character. When a non-blank character
 

is encountered, it is stored in the output string. If the input number of
 

characters to examine is negative, blanks within a Hollerith string will
 

remain.
 

Output: The outputs from MDSQZB are a character string with no imbedded
 

blanks and the number of non-blank characters.
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ISAGE 
ENTRY MDSQZB 

CALL MDSQZB i'NCOLSN) 

ARGMT /0 TYPE DIM DEFINITION 

N,COL 1I0 I N ON INPUT NCOL IS AN ARRAY O CHAR-

ACTERS IN WHICH BLANK ARE Tn ,BE 

REMOVED. 
ON OUTPUT NCOL IS AN ARRAY coNTAINI'NG 

THE PACKED CHARACTERS. 

N I/0 I I ON 
IN 

INPUT N I5 THE NUMBER OF COLUMNS' 

INPUT ARRAY TO SEARCH FOo BLANKS. 

IF NEGATIVE. BLANKS WILL NOT BE 

REMOVED WITHIN HOLLERITH CHaRACTERS 

I.Eo BETWEEN APOSTROPHES. 
ON OUTPUT N IS THE NUMBER Or NON-

BLANKS CHARACTERS IN NCOL. 

EXTERNAL REFERENCES 
NONE 

DIAGNOSTICS 
NONE 

EXTERNAL STORAGE 
NONE 

BLANK COMMON 

NONE 

LOCAL COMMON 
NONE 
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MDELET - Storace Monitor
 

MDELET deletes an entry from the storage monitor table (SMT)
 

Method
 

Input: The inputs to MDELET are the label of the desired storage monitor
 

entry to be deleted-and the entry type if a search for type is to be made.
 

Processina: MDELET locates the entry in the storage monitor table
 

corresponding to the input label and flags it for deletion. The required
 

storage is not released, however and the data base is not automatically
 

packed by MDELET. If MDELET could not find the label of the SMT entry, a
 

flag is set to indicate that the entry was not flagged for deletion,
 

Output: The outputs from MDELET are a flag indicating whether the SMT
 

entry was found and deleted or not. If the SMT was deleted, the sort, pack,
 

and deactivate flags are output to indicate deletion of the entry.
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;SAGE
 
ENTRY MDELET
 

CALL MDELET (LABELiTYPEINOFIND)
 

DEFINITION
ARGMT 1/0 TYPE DIM 

LABEL 
T-YPE 

I 
I 

I 
I 

I LABEL OF THE DESIRED sMT ENTRY 

ENTRY TYPE - IF'NEGATIVE NO SEARCH 

FOR TYPE IS MADE 

NOFIND 0 1 1 ENTRY FIND FLAG 
.a ENTRY WAs FOUND AND DELETED 

at ENTRY WAS NOT FOUND 

EXTERNAL REFERENCES
 

MOFINO
 

DIAGNOSTICS
 
NONE
 

EXTERNAL STORAGE
 
-NONE
 

BLANK COMMON
 
VARB 1/0
 

SORTFG 0
 

PACK 
 0
 

LOCAL COMMON
 

NONE
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MDENTR - Storage Monitor
 

rIDENTR is used by the MDAS monitor to allocate storage for the storage
 

moni.tor table (SMT).
 

Method
 

Input: Description (type, label, length and column dimension) of the SMT
 

entry to allocate and a flaa indicating storage device (memory or RAD) are
 

input along with current addresses and flag of the present SMT.
 

Processina: MDENTR builds an entry in the storage monitor table and
 

allocates storage for the data either in core or on an external 'storage device.
 

The SMT is a part of blank common area beginning at DBSTRT (a blank conon
 

variable). For a definition of an SMT entry see Section 5.3.
 

The core resident data is allocated from the bottom of blank common
 

backwards toward the SMT. If storage is not available either in the SMT or
 

the data area, the data base is packed in order to squeeze out the deleted­

entries. If storage is still not available-an error flag is output, a,
 

message is printed and the routine returns. When an entry is placed in the
 

SMT and storage is allocated, the sort flags are set to indicate that the SMT
 

is not sorted.
 

The algorithm for MDENTR is depicted in the functional flow diagram.
 

Output: Th address and size of the data allocation and addresses and
 

flags associated with the new SMT are output along with an output flag.
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USAGE
 
ENTRY HDENTR.
 

CALL MDENTR (TYPELABEL.SIZE.IDIMADDROEvICE.ERRORI
 

ARGMT I/0 TyPE DIM DEFINITION 

TYPE I I I ENTRY TYPE FLAG 

LABEL I I I ENTRY LABEL 

SIZE I I I LENGTH OF ENTRY 

IDIM I I I COLUMN DIMENSION OF ENTRY 
ADDR 0 I 1 ADDRESS OF DATA ALLOCATION 

FOR CORE RESIDENT DATA ADDRrSS IS 
GIVEN RELATIVE BLANK COMMON 
FOR DATA RESIDING ON EXTERNAL STORAGE 

ADDRESS IS THE NEGATIVE ADDRESS 
DEVICE I I DEVICE INDICATOR 

-0 ALLOCATE CORE STORAGE 
ml ALLOCATE EXTERNAL STORAGr 

ERROR 0 I ERROR RETURN FLAG 

sO NO ERROR 
ml STORAGE MONITOR TABLE IS FULL 

=2 CORE STORAGE EXCEEDED 

=3 EXTERNAL STORAGE EXCEEDEn 

EXTERNAL REFERENCES
 
MDPACK
 

DIAGNOSTICS
 
**STORAGt REQUIREMENTS EXCEEDED
 

THE STORAGE REQUIRED EITHER FOR CORE OR EXTERNAL DEVICES
 

IS GREATER THAN THAT AVAILABLE
 

EXTERNAL STORAGE
 
NONE
 

BLANK COMMON
 
VARB I/0
 

DBADOR I/O
 
ExADOR I/O
 
EXMAX I
 
NTRY j/O
 
PACK I
 

SORTFG 0
 

LOCAL COMMON 

NONE REPRODUCIBILITY OF THE 

ORIGINAL PAGE ISPOOR 
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MDFIND - Storage Monitor
 

MDFIND is used to locate an entry in the storage monitor table (SMT).
 

Method
 

Input: The inputs to MDFIND are the label and type of the desired SMT 

entry. If no search is to be made on type, that input will be negative. 

Processing: SORT1 is called to do an alphabetic sort on labels in
 

the SMT and, if desired, to sort on type also. This sort is done only if
 

the SMT is not already sorted in the above way. The SMT is then seardhed
 

for the input name and type, if type was input. If the entry in the
 

SfT was found, the output flag is set to one and the routine returns. The
 

size of data, entry type of SMT, address of the data and the address of the SMI
 

entry are output along with the output flag set to zero. The routine then
 

returns to the calling routine.
 

Output: The outputs from MDFIND are the entry type, the size and address
 

of the data and the address of the SMT entry. A flag is also output to
 

indicate whether the desired entry was found or not.
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JSAGE
 
ENTRY MDFIND
 

CALL MDFIND (LABELTYPESIZEADDRNNOFIND)
 

ARGMT I/0 TyPE DIM 

LABEL I I I 
TYPE I/O 1 1 

SIZE 0 1 1 


ADDR 0 I 1 


N 0 1 I 


NOFIND 0 I 1 


EXTERNAL REFERENCES
 
SORTI
 
SEARCH
 

DIAGNOSTICS
 
NONE
 

EXTERNAL STORAGE
 
NONE
 

BLANK COMMON
 

VARB [/0
 

DBSTRT I
 
NTRY I
 
sORTFG I
 

LOCAL COMMON
 
NONE
 

DEFINITION
 

LABEL OF THE DESIRED sMT ENTRY
 

oN INPUT TYPE IS THE ENTRY TyPE* IF
 
IS MADE.
NEGATIVE NO SEARCH FOR TYPE 


ON OUTPUT TYPE 
IS THE ENTRY TYPE FROM
 

THE SMT 

SIZE OF DATA - IF NEGATIVEs DATA 

RESIDES ON EXTERNAL STORALE DEVICE 

ADDRESS OF DATA - IF DATA Ic CORE 
BLANK
RESIDENT ADDR IS RELATIVE Tm 


DATA RESIDES ON rXTERNAL
COMMON. IF 

STORAGE DEVICE, THE NEGATIVr ADDRESS
 

IS RETURNED
 
ADDRESS OF THE SMT ENTRY REi ATIVE To
 

BLANK COMMON
 

FIND FLAG
 
.0 DESIRED ENTRY WAS FOUND ;N THE SMT
 

a1 ENTRY WAS NOT FOUND IN TwE SMT
 

REPRODUC]BILITY OF THE.
 
ORIGINAL PAGE IS POOR
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MDGET - Storage Monitor
 

MDGET retrieves data from the storage monitor table (SMT) and stores
 

the data in an output buffer.
 

Method
 

Input: The inputs to MDGET are the name and entry,type of the SMT entry
 

where the data resides. The Ith and Jth location within the name to begin
 

the retrieval must be input along with the maximum size of the output buffer.
 

Processing: The SMT is searched to find the proper entry in the SMT.
 

If the entry was not found the status flag is set to -1 and the routine returns.
 

The displacement within the data as specified on input and the size of the
 

data is calculated. If the size of the data is not the same as the maximum,
 

the status flag is set to 1 and the routine continues. If the calculated
 

size of the data is greater than the input maximum size, the output size is set
 

to the maximum size. If the data is in memory, the data is moved into the output
 

buffer and the routine returns. If the data is to be on RAD, MDRADI is called
 

to store the data on RAD. If an error occurred on the RAD store, the status
 

flag is set to -3 and the routine returns. (Currently an attempt to store
 

data on RAD will result in a termination of execution.)
 

Output: A buffer containing the desired data is output from MDGET
 

along with the SMT entry type, number of words in the buffer and a status
 

flag.
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'SAGE 
ENTRY MDGET
 

CALL MDGET (NAMEtTYPEIDISSJDISMAX.BUFFSIZESTATUq)
 

ARGMT 


NAME 

TYPE 


lots 


JDIs 


MAX 

BUFF 

SIZE 

STATUS 


/ 0TyPE DIM 


I I I 


I/0 I 1 


I I I 

I I I 

I I I 

0 SIZE 

0 1 I 

0 1 1 

EXTERNAL REFERENCES
 
MDFIND
 
MDRADI
 

DIAGNOSTICS
 
NONE
 

EXTERNAL STORAGE
 

NONE
 

BLANK COMMON
 
NONE
 

COMMON
LOCAL 

NONE
 

DEFINITION
 

THE SMT DIRECTORY
BE FOUND IN
NAME TO 

TY1 E TO BE
IS THE sMT


ON INPUT TYPE 

IF NFGATIVE
IN SMT SEARCH.
MATCHED 


NOT COMPARED
TYPE IS 

S FOUND
THE TYPE 
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THE sMT ENTRY
 

I-DIMEM SION OF

IN 


DISPLACEMENT FOR THE 


NAME
 

DISPLACEMENT FOR THE j-DIMEmSION 
OF
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SIZE OF OUTPUT BUFF R
 

MAXIMUM 

DATA FRoM NAME(IDIS.JDIS)
 

WORDS MOVED 
INTO '+66
 
NUMBER oF 

STATUS FLAG
 

I NUMBER OF WORDS TRANSFEpED WAS
 * 

NOT EQUAL TO MAX
 

a 0 DATA TRANSFERED OK
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TO READ
IN ATTEMP;
ERROR OCCURED
-3 


DATA FROM RAD
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4.4-2 



indsIe nam daSts tu 

t e S T e t yflag to 1 

o S e statusi 

+ 2 Was_ 

Computeldff 

andie ofdataRA 

th ieo o Set status 

of thmaxflag to -I 

Yes 

MD E e DiG 

into bufer.Crrentl 



MDPACK - Storage Monitor
 

MDPACK removes deleted entries from the storage monitor table (SMT)
 

and packs the data area.
 

Method
 

.Input: The storage monitor table with the entries to be removed flagged
 

for deletion and the SMT accounting information are input to MDPACK along
 

with the device (memory or RAD) to pack.
 

Processing: 'For a memory pack MDPACK locates the entries flagged for
 

deletion in the SMfT, set the deletion flag (TYPE = -1) to a large number, and
 

shifts the remaining data base squeezing out the data for the deleted entry.
 

The address-portion of the SMT is updated simultaneously. Packing of theSMT
 

is accomplished by sorting the SMT by type, i.e., moving the deletions to
 

the bottom and resetting the number of SMT entries.
 

The mechanism of the above procedure is to check each entry in the SMT
 

from the last-entry to the first. Each entry is noted as to whether or not
 

the entry is to be deleted. The data base is squeezed after there has been
 

detected a deleted entry after a non-deleted entry, excluding the first
 

deleted entry. The data base is alsd squeezed after all entries are checked,
 

if it needs to be. The PHAZ-flag keeps a record of the entries. The definition
 

of PHAZ is
 

= 0 no deleted entries found yet
 

= 2 last entry was deleted
 

= 3 last'entry was not deleted
 

= 4 end of SMT, last entry not deleted and the final data base
 
squeeze has not occurred
 

For a RADopack, MDPACK returns.
 

Output: The storage monitor table with'the deleted entries removed
 

and the packed data area are output from MDPACk.
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ISAGE 
ENTRY MDPACK 

CALL MOPACK (DEVICE) 

ARGT I/0 TYPE DIM DEFINITION 

DEVICE I i DEVICE TO BE PURGED ALONG WiTH THE 
SMT 

wO PACK USER CORE 
.1 PACK USER DATA ON EXTERNAL STORAGE 

DEVICE 

EXTERNAL REFERENCES 

SORTI 

DIAGNOSTI[CS 
NONE 

EXTERNAL STORAGE 
NONE 

BLANK COMMON 

VARB 1/0 

DBSTRT I 

NTRY I 
PACK 0 

SORTFG 1/0 
DBADDR 0 

LOCAL COMMON 
NONE 
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MDPUT - Storage Monitor
 

MDPUT puts data into the storage monitor table (SMT).
 

Method
 

Input: A description of the SMT entry of where to place the data is input.
 

The data along with a flag to indicate where the data is to be placed (memory
 

or RAD) is also input.
 

Processing: The SMT is searched for the proper entry. If an entry was
 

found for the data name and the data in the SMT does not have the same attributes
 

as the input data (i.e., resides on the same device and has the same length)
 

the entry in the SMT is deleted. If an entry was not found or was deleted,
 

storage will be allocated in the SMT for that entry. If an error occurs in
 
the allocation, the status flag is set to -1 and the routine returns.
 

If the device to place the data is memory, the data is moved into memory,
 

the status flag set to 0 and the routine returns. If the device is external
 
storage, MDRARO is called to store the data on RAD. Df an error occurs in
 

the RAD store, the status flag is set to -3. MDPUT then returns to the calling
 

routine.
 

Outnut: Data is placed in the SMT with a new entry in the SMT if one
 
did not exist for the desired data name. A status flag is also output indicat­

ing if an error had occurred.
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.USAGE
 
ENTRY MDPUT
 

CALL MDPUT (NAMEtTYPEILENGTHIOMiBUFFgoDEVSTATUS)
 

ARGMT. I/o TypE 


NAME I 

TYPE I 
LENGTH I 
IDIM I 
BUFF I 

DEV -I 

STATUS 0 

I 


I 

I 


I 

I 


1 


EXTERNAL REFERENCES
 
MDFIND
 

MDELET
 
MDENTR
 
MDRADO
 

DIAGNOSTICS
 
NONE
 

EXTERNAL STORAGE
 
NONE
 

BLANK COMMON
 
NONE
 

LOCAL COMMON
 
NONE
 

DIM 


I 


I 

I 


LENGTH 

1 


1 


DEFINITION
 

NAME oF THE SMT ENTRY IN WHtCH TO PUT
 
THE.DATA
 

DATA TYPE FLAG
 
SIZE OF THE SMT ENTRY
 

COLUMN DIMENSION oF ENTRY
 
DATA BUFFER
 

MEMORY/RAD FLAG
 
sO MEMORY
 

al RAO
 

STATUS FLAG
 
a 0 	OK
 

COULD NOT ENTER SMI ENIpY
*-I 


3-3 RAD WRITE FAILED
 

S1PnODUCIBIT OF"THZ
 
ORTINAL PAGE IS POOR
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MDRADI - Storage Monitor
 

MDRADI, when developed and implemented, will retrieve data from the
 
RAD (random access device) portion of the SMT and place it into the pro­
vided memory buffer. MDRADI is the mechanism for acquiring particular
 
data elements which are in the RAD portion of the SMT, whereas MDROLL is
 
the mechanism for transferring data between the memory and RAD portions of
 

the SMT.
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MDROLL - Storage Monitor
 

MDROLL's purpose is to bring into memory all data required by a processor
 

for execution and, if necessary, will roll data not required onto RAD. However,
 

currently the RAD is not defined therefore MDROLL does not perform the above
 

function but exists to provide the interface. -Currently MDROLL only determines
 

if enough memory is available.
 

Method
 

Input: The number of data words required by a processor to execute is
 

input toJMDROLL.
 

Processinq: When the number of words available is less than the words
 

required for execution, additional code must be implemented to place data on
 

RAD. This code will determine what is necessary to remain in memory, determine
 

the hierarchy of data to go to RAD and will write this data on RAD. The logic
 

of the current MDROLL is shown in the figure with a comment where the proposed
 

code should be inserted.
 

Output: A status flag indicating the availability of memory is output.
 

The proposed output will be data on RAD that will not fit into memory.,
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USAGE
 

ENTRY MDROLL
 
CALL MDROLL (NWORDSSTATUS)
 

ARGMT I/O TyPE DIM DEFINI-TION
 

NWORDS I I I NUMBER oF WORDS IN SMT REQUiRED
 
STATUS U I ! STATUS FLAG
 

- 0 NUMpER OF WORDS AVAILABIE I'S
 

GREATER THAN THAT REQUIPED
 
u-I NUMRER OF WORDS AVAILABI E IS
 

LESS THAN THAT REQUIRED
 

EXTERNAL REFERENCES
 
HDPACK
 

DIAGNOSTICS
 

MEMORY REQUIRMENTS EXCEEDED
 
-,*o,,,,,, WORDS REQUIRED ****.*ee.: ,,J RVALAO6I 

NUMBER OF WORDS REQUIRED IS GREATER THAN THAT
 
AVAILABLE, sTATUS FLAG WILL BE SET TO -I.
 

EXTERNAL STORAGE
 

NONE
 

BLANK COMMON
 
VARS I/O
 

DBADDR I
 
NTRY I
 

LOCAL COMMON
 
NONE
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MDALOC - Execution Controller
 

MDALOC establishes the input and output arguments' linkages for a pro­

cessor, allocates storage for all output parameters, and communicates para­

meters scan control data to the resident.
 

Method
 

Input: The control table, in the working buffer, contains the argument
 

specifications and data input to MDALOC.
 

Processing: MDALOC is entered from MDSMON for each command to establish
 

the argument linkage. MDALOC's function is to allocate storage for output
 

variables, to determine argument addresses of input and output variables
 

and to initialize -scan values.
 

The control table containing the argument specification is passed to
 

MDALOC-through a working buffer in comon. If the control table is incomplete,
 

the status flag is set to -1 and MDALOC returns; otherwise, the control
 

table is packed before proceeding.
 

Before the allocation of storage for output variables can be performed,
 

MDALOC must determine the amount of memory not yet allocated in order to
 

decide if the total amount of memory will be more than the available memory.
 

This is accomplished by first initializing a memory counter to the known
 

memory which includes the memory needed for immediate data (=). Each argument
 

is examined. If the argument is immediate data, no memory is added to the
 

memory counter. If the argument data is indirect (@), memory will be added
 

to the memory counter, ignored or an error will occur depending on the argument's
 

input/output. For output arguments the memory counter will be incremented by
 

the size of the data. If an SMT entry already exists for this name, the type
 

of the output array to be created and the SMT type that exists must be the
 

same and the size of the SMT entry must be larger than the array to be created
 

or the old SMT entry will be deleted. If input arguments are not immediate
 

data or in IMS, an error will occur.-' In no case will memory be added to the
 

counter for an input argument. After all arguments are checked MDROLL is
 

called to determine if enough memory is available and if not to roll part of
 

data to RAO (not implemented). The new control table is then placed in the
 

SMT with the name &CONTB and with a type of 1000. A detailed description of
 

above is depicted on pages I - 5 of the flow chart.
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The allocation of storage for output arguments and the setting of the
 
argument address are shown inthe flow chart on pages 5 7. For each
-

argument the address within the data base that contains the data is cal­
culated and the address is placed inblank common (variable name ARGADD
 
dimensioned 30). If an argument is not found in the SMT with the same name
 
and type, MDENTR iscalled to allocate storage and to build an SMT entry
 
for that argument. If an argument isincomplete and is not a scan variable,
 
the completion flag for the entire control table is set to incomplete,
 
an error message is printed, and MDALOC returns. The argument data
 
address for immediate data issimply the relative address within the
 
control table plus the address of the control table. For indirect data, the
 
address is calculated by determining the amount of memory left in the control
 
table and subtracting that from the next available cell inmemory after the
 
control table. The addresses of the scan variables are set to B(36) and B(41)
 
inblank common.
 

The scan initialization performed by MDALOC is shown in pages 8 10
-

of the flow chart. Ifthe scan is activated, the preamble table of the data
 
box is set up. The definition of the table follows:
 

format flag number of dependent variables in summary vector
 

name of X variable name of Y variable
 

units of X variable units of Y variable
 

X centroid of scan Y centroid of scan
 

X step size Y step size
 

number of steps to be number of steps to be
 
taken on each side of taken on each side of
 
X centroid Y centroid
 

If any of the two scan arguments is incomplete, the values for that argument
 
are zeroed. The scan variables within the intramonitor communication data
 
area are also set. The preamble table is output to RAD and the file opened.
 
The argument text definition text is then output to the same file. Currently
 
the argument text definitions are blank. The data box is now initialized
 
and ready to accept data.
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Output: The addresses of argument data are placed in blank common and
 

the control table from the working buffer is placed in the SMT with the
 

name &CONTB and type of 1000. If a scan is activated for this processor,
 

the scan values are placed in blank common and the preamble to the data box
 

is output to RAD.
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AGE 
ENTRYMDALOC
 

CALL MDALOC (STATUS)
 

ARGMT 1/O TYPE DIM DEFINITION
 

STATUS 0 1 1 STATUS FLAG
 
...... --STATUS OK
 

-1 CONTROL TABLE INCOMPLETE
 
...... -N-T-ROL -TABLE DATA NOT FOUND
-*2-


"3 UNyEFINED INPUT ARGUMENT 
a -D-AA-.S ON RAD/NOT IMPLEMENTED 
-5 ERROR IN MDENTR 
"4-ERROR IN MOPuT
 
-7 ERROR IN SCAN DATA
 

........... ..- BERROR IN--MOPUTC
 
-9 I/o ARG. OF INSUFFICIENT SIZE
 

EXTERNAL REFERENCES 
MDCTPK ..-... 

MDSPEC 
__J DLKUE . . . . . .. . ..-.... . . ... - " , 

MDF IND 
MDIMSI . . .... . ...... 
MDELET 
MOROLL -. 

MDPUT 
. .--NDENT-R - ---------. . . 

MDCNTS 
-- - -- MDPUTC---- -- --..............-- -- - -- -- - --­

-- D-_AGNOS_ IC-_. .. . . . . 

***.et ETYPE 3 DELETED.
 
- HLS-ARGUMENT--IS-OUTPUT .DATA--1T8AT- IS-NOT .IMMEDLATE-.AND 

THE TYPES DO NOT MATCH THEREFORE THE OLD SMT ENTRY IS
 
DELETED. . ... . . .. ..... ..........
 

***ERROR ENCOUNTERD WHILE PREPARING FOR
 
__-PROCESSOR-EXECUT-ION.........
 

STATUS FLAG HAS BEEN SET TO A NEGATIVE NUMBER.
 
--- SEF IE HE_..tAG. I-BLE--aRQR- ..........-.....
EAIN.LaTaN--04_ SD 


. .E .F.RNAL _5 ORAGE .. . .. ... 
THE PREAMBLE AND THE ARGUMENT DEFINITION TEXT OF THE 

--- D LT-A B X-- -OUTR T TO RA-Do-. ... . . . .... . .......... ..... .... 

&__LA&N __K-_CD tIKL 
VARB I/O 

ARGAD 0 
. - -- -ARGADO - 0 - --. -. . - .. ..... ..... . . ..... ......... ...... 

DBSVLN 0 
... .---- o OnUOIBIh0l-OF THENUKARG IU 

SCANF 0 E IS POOR 
-SCNVAL O-.. . ..... . ........ ...... ._ --___ _P . 
VERSON I 
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MDCMTG - Execution Controller
 

rIDCMTG brings the command table into memory (SMT) and places the
 

requested command into the intramonitor communications area of blank common.
 

Method
 

Input: The majority of the input is contained in blank common and is:
 

the command table name, the command table type, the command number to be
 

executed next and the number of the last command to be executed. The call­

ing sequence contains a flag indicating if this is the first execution of
 

MDCMTG for this command table. If it is,the command to be executed next
 

and the last command are sequence numbers which are converted to command
 

numbers.
 

Processing: The command table is brought into the memory portion of
 

the SAT, if necessary. If this is the initial execution, the range of
 

commands is checked for legality, and, if valid, converted to command num­

bers and stored in common. If an error exists in the request (i.e., bad
 

sequence number) control is returned to MDSMON with an indication of this
 

occurrance. An error message is also printed.
 

In each execution, the command number to be executed is compared to the
 

last number to be executed and the last number is compared to the total
 

number-of commands in the table. If either comparison shows that the limits
 

have been exceeded, an error message is output and control is returned to
 

MDSMON with a status indicating such. If neither limit is exceeded, the
 

command is broken into its characteristic parts and placed in common.
 

Output A status indication is passed through the calling sequence.
 

All other output is placed in blank common and is: a print flag, a temporary
 

edit existence flag, the control table type, the control table name, the
 

processor name and the sequence number of the command to be executed.
 

5.2-1
 



USAGE
 

ENTRY MDCMTG
 
CALL MDCMTG (STATUS)
 

ARGMT I/O TYPE DIM 

STATUS I/O I 1 


EXTERNAL REFERENCES
 
MDCMT,S
 
MOFIND
 

DIAGNOSTICS
 

DEFINITION
 
UPON ENTRYSTAT US INDICATES IF THIS
 
IS THE INITIAL ENTRY: uoINITIAL
 
ENTRY, =INOT INITIAL ENTRY. UPON
 
COMPLETION OF EXECUTIONiSTATUS
 
INDICATES THE VALIDITY OF THE INPUT:
 
=OINPUT GOOD: =ISYNTAX ERROR IN
 

INPUT.
 

**eNON-EXISTANT SEQUENCE NUMBER
 
THE USER HAS SPECIFIED A SEQUENCE NUMBER TO EXECUTE
 

WHICH DOES NOT EXIST.
 

EXTERNAL STORAGE
 
NONE
 

BLANK COMMON
 
VARB l/0
 

CMDNO 1/0
 
CMTNAM I
 
CMTYP I
 
CTNAME -O
 

CTYPE 0
 
DIRECT I
 
EDIT 0
 
ENDNO 1/0
 
ENTRY I
 
PNAME 0
 
PRINT 0
 
SEQNO 0
 

LOCAL COMMON
 

NONE
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MDCMTV - Execution Controller
 

MDCMTV is used to interpret and verify the directive given for SEMI,
 

AUTO or AUTO* mode.
 

Method
 

Input: The only input to MDCMTV is a buffer containing the directive
 
after processing by the user communications component.
 

Processing: After verifying the syntax of the directive, the command
 
table type and name are extracted from the directive and placed in blank
 
common. If the user has specified a range of commands to execute, the
 
beginning and ending sequence numbers of this range are placed in 
common
 
and control returned to MDSMON. If a range is not specified'; zeros are
 
placed in common in place of sequence numbers.
 

Output: A status flag indicating the validity of the directive is
 
passed through the calling sequence. All other output is in blank common
 
and is: 
 the command table type, the command table name, the sequence num­
ber of the first command to be executed (or zero if not input) and the
 
sequence number of the last command to be executed (or zero if not input).
 

5.3-1
 



USAGE
 
ENTRY MDCMTV
 

CALL MDCMTV(INPUTSTATUS)
 

ARGMT I/O TYPE DIM DEFINITION 

INPUT 

STATUS 

I I 

a0 

VARB 

1 

BUFFER CONTAINING THE DIRECTIVE GIVEN 

FOR THE SEMIAUTO OR AUTOS MODE. 
FLAG SHOWING PRESENCE OF A SYNTAX 

ERROR IF IT IS. NONZERO. 

EXTERNAL REFERENCES
 
NONE
 

DIAGNOSTICS
 
000 SYNTAX ERROR
 

THE USER MADE A SYNTAX ERROR WHEN HE ENTERED THE
 

DIRECTIVE,
 

EXTERNAL STORAGE
 
NONE
 

BLANK COMMON
 
VARB I/O
 

CHDNO 0
 

CMTNAM 0
 
CMTYP 0
 
DIRECT I
 
ENDNO 0
 

COMMON / MDCODE /
 

VARS 1/0
 

ASTRIC I
 
COMMA I
 

DOLLAR I
 
EOS I
 
INTGR I
 
MINUS I
 
NAME I
 
PERCNT I
 
UPARRW
 

LOCAL COMMON
 

NONE
 

5.3-2
 



Sad No Otu ro 

syntaxpSntaxnae se-CT 
OK mesfor name7 

a
 
g


i 


Yes o 

F 

Determine MDCMTVndescoat I

ad
in comnec 
a lepre an pae
 

iComm n d oUe&MT
 

table name foaramam
 

given3
 



MDMERG - Execution Controller
 

MDMERG, when developed and implemented, will locate any applicable
 

temporary edits within the command table being executed and modify the
 

control table accordingly before the particular command is executed. The
 

accompanying flowchart is a functional representation of MDMERG's task.
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MDPRT - Execution Controller
 

MDPRT, when developed and implemented, will print the control table
 

variables at execution time which have been designated to be printed. The
 

feature of the control level syntax is used to designate execution time
** 


printing of a control'table variable. Input variables are printed before
 

processor execution and output variables are printed after processor
 

execution.
 

5.5-1
 



REPRODUCIBILITY OF THE 
ORIGINAL PAGE IS POOR 

MDSMON - Submonitor/Execution Controller
 

MDSMON is the main subroutine to the submonitor/execution controller
 

component. This routine is used to assist the user in constructing and
 
executing a simulation. MDSMON's execution controller function isto receive
 

user inputs regarding the commands to be executed, call the control table
 
editor to complete the control table if necessary, and call MDALOC to
 
establish the proper linkages for all arguments input to and output from
 

each processor executed.
 

Method
 

Input: The inputs to MDSMON are obtained from the user. The user is
 

prompted for directives and in the MANUAL mode comands are input, in the
 
SEMI mode the user is prompted to verify or to change the command. In the
 

AUTO mode there is no user interaction unless an incomplete control table is
 
encountered.
 

Processing: MDSMON is entered from the MDAS resident to control the
 
execution of a simulation. On the initial entry into MDSMON the user is
 
prompted for an access code and whether or not to initialize the data area.
 
The user is then prompted with an up arrow for a directive. Valid directives
 

are: 

USAGE 
COPY 

Gives elapsed time of MDAS session 
Not operational 

QUIT Terminates session 

EDCMT Edits command table 

Utility 
directives 

EDCNT 
TOC 

Edits control table 
Lists table of contents of the information 
elements in user data area 

DELETE Deletes data area in SMT 

DUMP Lists contents of an information element 

SAVE 

RECALL 

SEMI 

Save data area (SMT) 
Recall saved data area (SMT) 

Executes commands in command table but allows 
user to alter commands before execution 

Execution 
directives 

AUTO 

MANUAL 

Comnands in cormiand table are executed without 
any user interaction 
Execution controller prompts user Tor each command 

AUTO* Same as AUTO but commands are printed as 
are executed. 

they 
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For each utility directive, MDSMON calls a subroutine to. perform the
 
designated function and then returns for another directive (except inthe
 
case of QUIT).
 

The execution directives are processed within MDSMON. When one of
 
these modes is entered, MDSMON processes a command and returns to the
 
resident for execution. When MDSMCN is reentered, the mode remains in
 
effect until all commands are processed and executed at which time the user
 
isprompted for a new directive.
 

In the manual execution mode, MDSMON prompts the user for each command
 
to be executed. The end of the execution sequence is determined when the
 
user responds with an +' or fails to enter a new command (i.e., presses
 
carriage return in response to the command prompt '#). In the manual mode
 
MDSMON will verify and interpret the syntax of each command entered.
 

In the automatic and semi-automatic execution modes the name of-a
 
command table is input and MDSMON will retrieve this information element
 
from the storage monitor table (SMT). Once the comand table has been stored
 
inthe working command table (&CMDTB), its commands are processed sequentially
 
Each command to be executed is extracted from &CMDTB using an index stored
 
in non-volatile memory. 
An optional field of the SEMI and AUTO directives
 
allows the user to specify the range of commands or the beginning command in
 
the execution sequence. The sequence number input in that field determines
 
the initial value of the command table index.
 

In the automatic execution mode the processors specified in each of the
 
commands are executed with no user interaction unless an incomplete control
 
table is encountered. An option on the AUTO directive has MDSMON indicate
 
its progress by printing each command as it is executed.
 

Inthe semi-automatic execution mode the controller prompts the user
 
with the sequence number, processor name and control table name of each
 
command. Inresponse to this prompt, the user has five options:
 

1. 	Carriage return, giving concurrence to execute the command.
 

2. 	"# nnn", ditecting the execution controller to a different command 
in the table (nnn is its sequence number). 
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3. 	"#", indicating that a manual override command is to be input in
 

place of the prompted command.
 

4. 	 "\", indicating that temporary edits are to be made to the con­

trol table before executing this command.
 

5. 	 "t", the SEMI mode is to be aborted and control returned to the
 

directive level.
 

In each of the execution modes, MDSMON checks the control table specified 

in each command for completeness and for consistency with the current version 
of the processor to be executed. A revision number isretained in the pro­

cessor catalog (PROTAB) for each processor and updated only when the processor 

interface changes. This revision number is also placed into each control 

table when it is created. 

If an incomplete control table is found MDSMON calls the control table
 
editor (entry MIEDCN) for the purpose of interacting with the user to complete
 

this table. Inthe MANUAL and SEMI modes a syntax mechanism ("\" following
 

the command) exists for directing the execution controller to call MDEDCN
 

even if the control table is complete.
 

For each processor to be executed MDSMON must also establish the input
 

and output arguments' linkages. This is accomplished by calling MDALOC
 
which also sets up the parametric scan control data. If the processor is
 

a utility, MDALOC will not be entered. The utility processor will be called
 

instead and will set up its own input and output argument linkage. Currently
 

only one utility processor exists, MDALCT, which performs the ALOCAT command
 

(allocates an array).
 

Output: The output from MDSMON isdependent on the input directive. If
 

the directive isother than SEMI, AUTO or MANUAL, the designated function is
 

performed. IfMDSMON is in the SEMI, AUTO or MANUAL mode, the control table
 

isedited if it is incomplete or is specified on input for edition. The
 
argument linkage is established for the processor before returning to the
 

resident for execution of the command.
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CALL MDSMON
 

EXTERNAL REFERENCES
 
... . . . .M Lfl O .. . . . .. .. . . .. .. . .. .. . . 

MDPRMT 

MDCMT 

MOUTIL 
. .. . .. .MDSULT . ... _. .. . .... 

MOVCMD 
---------sEARCH .. 

MDGETC 
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... .. ...MDMER G . ~.... . - - -- - - -.- __ 
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-OCHXT.S.- .. - . 

MDEDCN
 

MDCONV
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EXTERNAL STORAGE 
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MDCMNT - Command Table Editor
 

MDCMNT is the interfacing routine between the command table editor
 
(MDCMT) and the control table editor (MDCNT) for the appending of temporary
 
control table edits to a command. It maintains the order of the working
 
buffer, modifies the data from what MDCNT provides and deletes specified
 
edits when required.
 

Method
 

Input: Upon entry, the command table is contained in the working buffer
 
and is split into two parts: the commands and any existing temporary edits.
 
In addition, the processor name and the sequence number of the command to be
 
edited as well as an indicator showing the existence, or lack, of previous
 
temporary edits for this command are input through the calling sequence.
 

Processinq: A test is made to determine if edits already exist for
 
this command. If they do, they may be either retained or deleted. 
If deletion
 
is requested, the edits are removed and the remaining edits packed. 
Control
 
is returned to MDCMT with a successful edit status. If the edits are to
 
be retained, they are moved to the top of the temporary edits, their heading
 
removed, packed and processini is continued as though they were performed
 
at this time. If no edits existed, or we are retaining them, a search is
 
made to determine if the processor exists. If it does not, control is
 
returned to MDCMT immediately after posting an error message. Otherwise,
 
the revision number of the processor and the length of the default control
 

table are obtained.
 

In order to utilize the control table editor the argument specifications
 
must be brought into the working buffer. Therefore, a portion of the command
 
table in the buffer is written to the SMT with the name &CMDTB and the specifi­
cations read in to the buffer in their place. All arguments are then marked
 
undefined and control is given to the control 
table editor (entry MDCNTM).
 

Upon return from the control table editor, the edits just made are packed
 
by deleting any duplication in arguments. In addition, specified flags and
 
data type are placed in the argument label field of the data and the argument
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name is placed with the data. A heading is placed "on top" of the edits
 

which consists of the sequence number of this command, the revision number,
 

number of edits and the length (inwords) of the edits.
 

That portion of the command table which was written to the SMT upon
 

entry is retrieved and placed back in the working buffer. The entry in
 

the SMT for &CMDTB is deleted and control is returned to MDCMT.
 

Output: The only outputs from MDCMNT are a status flag indicating
 

how successful the edits were and any new edits made. The working buffer
 

remains split. If the user has entered "up arrow" (t)while under MDCMNT
 

control, the directive entered is contained in a prompting buffer in the
 

calling sequence and the status flag is set to so indicate.
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USAGE
 
ENTRY MDCMNT
 

CALL MDCMNT (PNAMESEQNOFLAG#INPUTSTAT)
 

ARGMT I/O TYPE DIM 


PNAME I I I 


SEQNO I I I 


F-LAG I I I 


INPUT 0 I SO 


STAT 0 I 1 


EXTERNAL REFERENCES
 
MDCNTM
 

MDELET
 
MoGET
 
MDGETC
 
MOPUT
 

SEARCH
 

DIAGNOSTICS
 
.. EDCNT ERROR
 

DEFINITIbN
 
THIS IS THE PROCESSOR NAME FOR WHICH
 
TEMPORARY EDITS ARE TO BE MADE.
 
THIS IS THE SEQUENCE NUMBER OF THE
 
COMMAND TO WHICH 'TEMPORARY EDITS ARE
 

TO BE MADE,
 
THIS IS AN INDICATOR WHICH DETERMINES
 
THE PRESENCE OF PREVIOUS TEMPOR'ARY
 
EDITS: s0,NO PREVIOUS EDITS
 

UIPREVIOUs EDITS DO EXIST BUT
 
RETAIN THEM
 

m2,PREVIOUS EDITS EXIST BUT
 
DELETE THEM.
 

THIS BUFFER WILL CONTAIN THE
 
DIRECTIVE ENTERED BY THE USER SHOULD
 
HE TERMINATE EDITING BY ENTERING AN
 

UPARROW
 
THIS IS AN INDICATION OF WHAT
 
OCCURRED IN MOCMNT*:
 

sIERROR OCCURRED IN READING OR
 
WRITING A FILE OR PNKME DOES
 

NOT EXIST
 
sOITEMPORARY EDITS PERFORMED
 

SUCCESSFULLY
 
-0-I CONTROL TABLE EDITOR (MDCNTM)
 

ENCOUNTERED AN ERROR WHILE
 
DOING EDITS
 

u2,WORKING BUFFER OVERFLOWOR
 
USER ENTERED UPARROW (t)
 

THE CONTROL TABLE EDITOR HAS ENCOUNTERED AN ERROR
 
WHILE DOING THE EDITS (STAT.-I)
 

**PROCESSOR NAME **s.* NOT FOUND
 
THE PROCESSOR NAME SPECIFIED COULD NOT BE FOUND IN
 
PROTAB (STAT-I)
 

**UNABLE TO READ DEFAULT CONTROL TABLE
 
WHEN ATTEMPTING TO READ THE ARGUMENT SPECS FROM THIS
 
PROCESSORS DEFAULT CONTROL TABLE A FATAL ERROR
 
OCCURRED (STATNi)
 

**UNABLE TO READ SMT
 
ATTEMPTING TO READ THE COMMAND TABLE FROM THE SMT
 
RESULTED IN A FATAL ERROR (STAT-I)
 

**UNABLE TO WRITE To SHT
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AN ERROR OCCURED WHEN WRITING THE COMMAND TABLE TO
 
THE SMT (STAT=r)
 

**WORKING BUFFER OVERFLOWeEOITING ABORTED
 
THE USER HA S ATTEMPTED TO MAKE TOO MANY EDITS AND
 
THERE IS NOT ENOUGH ROOM IN THE WORKING BUFFER FOR
 
THEM (STAT2)
 

**-.NO TEMPORARY EDI T S PERFORMED--ae
 
THIS MESSAGE OccuRs WHEN ANY OF THE ABOVE ERRORS
 
OCCUR,
 

EXTERNAL STORAGE
 
NONE 

BLANK COMMON 
VARB I/O 

PBLEN 
PROTAB 

I 
I 

COMMON / MDBUFF /
 
BDATA /0 
DsIZE 0 
WB I/O 
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Mark all arguments
 
'UNDEFINED'
 

Call control table editor
 
to prompt for edits,
 
process them and place
 
them in the working buffer
 

Waslo Didlo STAT =-1 
editnq uer JputOutput error 
succssfu 1+3message 

NDiSTAT = 2. 

STAT = 2
Yes 
I Delete repeated arumentst Output error 

a 

and append heading! adjust wokn bufe 


B TDATA ovrlwdmessage
and DSIZE 


Retrleve firstadn
 

tablte fromf SAT 

'GT Output error
 

succesful j message
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MDCMT - Command Table Editor
 

MDCMT is the driving routine of the command table editor. Its primary
 

function is to interact with the user at the command level to allow him
 

to build, or modify, command tables or to append temporary edits to the
 

control table of an existing command,
 

Method
 

Input: The EDCMT directive, with its optional fields, is the only input
 

to MDCMT. The submonitor calls MDCMT with this directive in the prompting
 

buffer after it has been processed by MDSCAN.
 

Processing: MDCMT interprets the input directive and determines what
 

fields are present. If needed, it obtains a requested command table from
 

the SMT and, in any event, begins prompting the user to determine what
 

options are to be performed. The user may perform any of four options:
 

list, number, delete or enter a command.
 

The list option allows the user to list all, or a specified portion, of
 

a command table. The user performs this by entering LIST START,END where
 

START is the beginning sequence number to start listing from and END is the
 

last sequence number to be listed. If neither START nor END is input the
 

entire command table is listed. MDCMT determines if both START and END are
 

existing commands and, if not, informs the user of such. If the commands
 

can be listed, MDCMT calls MDCMTL to perform the list. If any of the listed
 

commands have temporary control table edits appended to them, the edits
 

are listed immediately following the command by MDCMTL. After completing
 

this option MDCMT again prompts the user to allow him to perform another
 

option.
 

The number option is performed by the user simply entering NUMBER. At
 

this time MDCMT renumbers all commands in the table. The first command is
 

given sequence number 100 and each successive command is lO0more than the
 

command preceding it. Any temporary control table edits that exist are
 

also renumbered to retain the correlation between the edit and the command.
 

After completion the user is again prompted to allow him to request another
 

service.
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The user performs the delete function by entering -START,END where
 

START is the sequence number from which to begin deleting and END is the
 

sequence number of the last command to delete. If a one or both of the
 

sequence numbers do not exist, the user is notified of such and reprompted.
 

If the function can be performed, all the commands between, and including,
 

START and END are deleted as are any temporary edits which existed for a
 

deleted command. Once again, the user is prompted, upon completion, for
 

another option.
 

The command option allows the user to add new, or modify existing,
 

commands. MDCMT automatically prompts with sequence numbers anytime the
 

user is building a new table or begins inserting commands in the table past
 

the last one currently in the table. In other cases the user is prompted
 

only with #. The prompted sequence number will be modulo 100 and will be 100
 

greater than the last automatically prompted command. The user terminates
 

the automatic prompting by depression of carriage return without entering
 

a command. At this time the user is prompted with # to allow him to insert
 

new commands, modify existing ones or perform any of the options described
 

above. If the user modifies a command which has temporary edits appended,
 

the edits are deleted. The user specifies temporary edits by appending a
 

colon (:)to the control table name present in the command. Upon completion
 

of editing, the command table is sorted, packed and placed into the SMT
 

and assigned the name provided by the user, or &CMDTB if no name was provided.
 

Output: If the user terminates the command table editing normally
 

(i.e., depresses carriage return after being prompted with #) a status flag
 

(indicating normal completion) is the only output. However, if the user
 

terminates by entering "up arrow" C+) and enters a directive, not only is
 

a status flag indicating this fact output, but also the prompting buffer
 

containing the directive is output to the submonitor (MDSMON).
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0 7 15 17 18 19 

Number of Commands Number of Edits 
(NCIIDS) (NEDITS) 
Sequence umber. Control 

Table Type 

Processor *Name 

35 

Heading 

Command 
No. 1 

Control Table Name 

Sequence Number - . 

Processor Name 

Control 
Table Type 

Command 
No. 2 

Control Table flame 

Sequence Number Revision 
151 Number 23 

Length (inwords) of This Edit 

Number of 
Arguments 

Temporary 
Edit 1 

CF DataType Argument12 Label 181 

Argument Identifier 

Size, 

Size1 

Data 

Length, 
CF CF lP I DataType ArgumentLabel 

Argument Identifier 

Siee2S 

Size2 

Data! 

Sequence flumber Revision Number of 
Number Arguments 

Length 

Temporary 

Edit 2 

C RPURODrTIBILM OF 

Command Table Format (Packed) o()t "W_APAGE IS POO1 
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Command Table Definitions
 

Commands: Total of 3 * NCMDS + 1 words
 

Print Flag - A flag indicating the level of Control Table print at
 
execution.
 

Edit - Indicates the presence of temporary edits for this
 
command.
 

Temporary Edits
 

CF - Completion flag;
 
= 0 Argument is currently undefined
 
= 1 Incomplete
 
= 2 Complete
 

P - Print flag;
 
= 0 Argument not to be printed at execution time
 
= 1 Printed
 

I - Indicator;
 
= 0 Immediate data (=)
 
= 1 Execution time data (@)
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USAGE
 
ENTRY MDCMT
 

CALL MDCMT t INPUTSTATUS
 

ARGMT I/O TYPE D-IM DEFINITION 

INPUT J/0 I SO UPON ENTRY THIS BUFFER CONTAINS THE 
COMMANDCSCANNED)
(NEWNAME.) IT IS 

!EDcMT (OLONAME),
USED INTERNALLY AS 

A PROMPTI'NG BUFFER AND IS-AN oUTpUT 
ONLY WHEN THE USER ENTERS A NEW 
DIRECTIVE WHILE MDCMT is PROMPTING 

STATUS .0 I 1 THIS VARIABLE IS ONLY USED WHEN THE 
USER INPUTS A NEW DIRECTIVE WHILE 
MDCMT IS IN CONTROL, IT TELLS MDSMON 

EXTERNAL REFERENCES A DIRECTI'VE HAS BEEN ENTERED, 

MDCMNT
 

MDCMTL
 
MDCMTS
 
MDGET
 
MDPRMT
 
MDPUT
 
MDSPLT
 
MDVCMD
 

SORTI
 

DIAGNOSTICS
 
*eCOMMAND TABLE COULD 
NOT BE SAVED
 

THE NAMED COMMAND TABLE COULD NOT BE INSERTED
 

IN THE SMT.
 
0o0.e..o. IS NOT AN EXISTING COMMAND TABLE
 

THE USER HAS ENTERED THE NAME OF A COMMAND TABLE TO
BE MODIFIED WHICH COULD NOT BE FOUND 
IN THE SMT,
 
***SYNTAX ERROR
 

THE USER HAS ENTERED INCORRECT SYNTAX FOR ONE OF
 
THE OPTIONS AVAILABLE UNDER THE EDCMT DIRECTIVE.
 

o.'UNDEFINED SEQUENCE NUMBER
 
THE USER HAS SELECTED THE LIST OPTION BUT ONEOR
 
BOTH, OF THE SEQUENCE NUMBERS HE HAS INPUT DOES NOT
 
EXIST.
 

*OWORKING BUFFER OVERFLOW--EDITING ABORTED, COMMAND TABLE
 
*@et# SAVED BUT MAy NOT BE COMPLETE
 

THE USERS MODIFICATIONS REQUIRED 
THAT MORE SPACE THAN
 
IS AVAILABLE BE USED. THE TABLE IS SAVED BUT SHOULD
 
BE USED ONLY AFTER BEING COMPLETELY CHECKED.
 

EXTERNAL STORAGE
 
NONE
 

COMMON / MDBUFF / 
MDLEN. I 
BDATA I/O 
DSIZE I/O 
WBUF
 

COMMON / MDCODE J 
 h hI Is'DUOPORPAGE O 
NAME IWWI" 
INTGR I 
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EOS I 
DOLLAR I 
PERCNT I 
COMMA 
UPARRW 
MINUS I 
FOUND I 

BLANK COMMON 
NONE 
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MDCMTL - Command Table Editor
 

MDCMTL is the routine which is used to print the command table. It is
 

structured such that all or part of the table may be printed.
 

Method
 

Input: All input is contained in the calling sequence and consists of:
 
the number of the command at which the print begins, the number at which to
 
stop the print, a flag indicating if called by the DUMP directive, if called
 
by the command table editor or if the temporary edits are not to be listed,
 

and a buffer containing the command table.
 

Processina: Each command to be listed is broken down into its con­

stituent parts and printed. As each command is printed, a check is made
 

for the existence of temporary edits. If they do exist and their listing
 
is desired, each edit is printed individually. The type of each edit is
 
determined and the required listing routine is called to do the print. The
 

origin of the print request must be determined for, in one instance, the
 
buffer containing the table is split into commands and edits and, in
 

another case, the table is not.
 

Output: The only output from MDCMTL is the print of the-command table.
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USAGE
 
ENTRY MDCMTL
 

CALL MDCMTL (STARTsENDSwBUFFLAG)
 

DEFINITION
'ARGHT I/0 TyPE DIM 


THE NUMBER OF THE COMMAND AT WHICH
START I I I 

THE PRINT BEGINS.
 

I I I THE NUMBER OF THE COMMAND AT WHICH
 
THE PRINT STOPS
 

VARS THE BUFFER CONTAINING THE COMMAND
 

END 


WBUF I I 

TABLE
 

FLAG I I I AN INDICATION OF THE CALLING ROUTINE:
 

*OCALL BY DUMP DIRECTIVE
 

Ii1CALL By COMMAND TABLE EDITOR
 
u2,DO NOT LIST THE TEMP EDITS
 

EXTERNAL REFERENCES
 
MOLSTO
 

MDLSTI
 
MDLSTR
 

MOLSTH
 

DIAGNOSTICS
 
NONE
 

EXTERNAL STORAGE
 
NONE
 

COMMON / MDBUFF /
 

VARB I/0
 

BDATA I
 

BLANK COMMON
 

NONE
 

LOCAL COMMON
 

NONE
 

OF THEWWRODUCIBILITY 
PAGE IS POOR(fltGNA 
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MDCMTL
 

Determine the range 
of commands to be 
listed (input) 

command
 

List thetep
 

-- coandsbod s i 
ed
 

MDCMTL Flow Diagram 
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MDCMTS - Command Table Editor
 

MDCMTS searches the comand table for a requested command (by sequence
 

number) and returns the number of the command corresponding to the sequence
 

number. If the requested number does not match any in the table, the next
 

largest command is returned.
 

Method
 

Input: All input is contained in the calling sequence and is: the
 

command table, the number of commands in the table and the sequence number
 

of the requested command.
 

Processino: If the command table is not empty, it is searched until
 

a sequence number greater than, or equal to, the requested number is found.
 

If none is found the number of the last command in the table is returned.
 

If the found number is not equal to the requested one, a flag is et indicat­

ing this and the found command's number is returned.
 

Output: All output is through the calling sequence and consists of the
 

number of the command corresponding to the requested sequence number, or
 

the number corresponding to the next highest command if the requested number
 

did not exist, and a flag indicating either an empty command-table, the
 

requested command existed or the requested command did not exist and the
 

next highest number was returned.
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USAGE
 
ENTRY HDCMTS
 

CALL MDCMTS (CMDTABNCMDSSEQNO,CMDSTATUS)
 

ARGMT 1/O TYPE DIM 

CMDTAB I I VARB 
NCMDS I I I 
SEQNO I I I 

CMD 0 1 1 

STATUS 0 1 1 


EXTERNAL REFERENCES
 
NONE
 

DIAGNOSTICS
 
NONE
 

EXTERNAL STORAGE
 
NONE
 

BLANK COMMON
 

NONE
 

LOCAL COMMON
 

NONE
 

DEFINITION
 

BUFFER CONTAINING THE COMMAND TABLE
 
NUMBER OF COMMANDS IN THE TABLE
 
SEQUENCE NUMBER OF THE DESIRED
 
COMMAND
 
NUMBER OF THE COMMAND CORRESPONDING
 
TO SEQNo (OR THE NEXT ONE IF SEQNO IS
 
NOT FOUND)
 
VALIDITY OF STATUS:
 

0OeSEQNO FOUNDRETURN OK
 
u-IoNULL COMMAND TABLE
 
ISEGNO NOT FOUNDNEXT COMMAND
 

RETURNED
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MDALST - Control Table Editor
 

The purpose of MDALST is to list or list and prompt the values of a
 

given argument in a control table.
 

Method
 

Input: The input to MDALST is the control table, a pointer to the
 

argument specifications in the control table, a pointer to the start of
 

the data in the control table, the length of the control table, and a flag
 

designating whether values are to be output only or output and the response
 

read. This data is passed to MDALST through the calling sequence.
 

Processing: MDALST calls MDLKUP to locate the argument data for the
 

requested argument. If MDLKUP cannot locate the argument data, then an
 

error message is printed stating the variable is undefined. All messages
 

and displays are output by MDALST for output only requests. For output and
 

read requests, the data is printed and a response prompted by MDPRMT.
 

Values for "=" (immediate data) and "@" (execution time data) are pro­

cessed and printed by MDALST or by calls to MDPRAT depending upon the request.
 

Free field data is printed in octal via MDLSTO, real via MDLSTR and
 

integer via MDLSTI if output only is requested; otherwise, MDPRMI is called.
 

Real values are printed by MDLSTR and Hollerith values by MDLSTH, unless
 

the request was for list and read then MDPRMR is called for real data and
 

MDPRMH for Hollerith.
 

Output: The output from MDALST consists of a buffer containing the
 

user's response as processed by MDSCAN and a status flag. The status flag
 

indicates the type of return from MDALST (0 = normal, other = undefined
 

argument).
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usAGE
 
ENTRY MDALST
 

CALL MDALST (CTABtARGPTR1 BDATA,LEN,FLAGBUFFSTATI
 

ARG M T 

CTAB 
ARGPTR 

I/0 TYPE 

I I 
I I 

DIM 

VARB 
I 

BDATA I I I 

LEN 
FLAG 

I 
I 

I 
I 

I 
I 

BuFF 0 1 VARB 

STAT 0 1 1 

EXTERNAL REFERENCES 
MOLKUP 
MDLSTH 
MOLSTI 
MDLSTO 
MDLSTR 
MoPRMH 
MDPRMI 

MOPRMR 
MDPRMT 

DIAGNOSTICS 
NONE 

EXTERNAL STORAGE 
NONE 

BLANK COMMON 

NONE 

LOCAL COMMON 

NONE 

DEFINITION.
 

cONTROL TABLE
 
INDEX INTO THE cONTROL TABLE ARGUMENT
 

sPECS
 
INDEX INTO THE CONTROL TABLL-

BEGINNING OF THE DATA
 
PROCESSING FLAG.
 
TYPE OF PROCESSING
 
I1OUTPUT VALUES 
23OUTPUT VALUES AND READ RESPONSE 
BUFFER CONTAINING USERS RE'sPONSE A. 
PROCESSED BY MDSCAN
 
STATUS OF PROCESSINb
 

OSNORMAL RETURN
 
-I UP ARROW RESPONSE
 

OF 

f - p 
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MDCNT - Control Table Editor
 

MDCNT is the primary subroutine of the control table editor. Its pur­

pose is to prompt the user, accept I/0 specifications, and place these into a
 

control table. There are two alternate entrances to M1DCNT; they are MDEDCN
 

and MDCMTN. MDEDCN is called to complete a control table being used to execute
 

a processor or to modify a control table immediately before execution. MDCMTN
 

is called for temporary edits.
 

Method
 

Input: The input to MDCNT is the buffer containing the user's input
 

EDCNT directive after it has been processed by MDSCAN. The EDCNT directive
 

allows the user to interactively create or modify a control table. The
 

control table contains the argument specifications and data needed for the
 

execution of a processor. When the EDCNT directive is requested, MDCNT
 

is called by the submonitor (MDSMON).
 

Processing
 

MDCNT must first validate the syntax of the EDCNT directive and then
 

interpret the fields. ?IDGET is called to bring a existing control table
 

(ifspecified on the directive) into the working buffer from the SMT. If
 

an existing control table is not specified, MDGETC is called to read the
 

default control table into the working buffer. MDSPLT is called to separate
 

the argument specs and data portions of the control table in the working
 

buffer.
 

Depending on the option(s) used on the EDCNT directive, the user is
 

prompted only for incomplete arguments or also prompted to concur with
 

existing values of completed arguments. If a "?" is entered to the right
 

of an 11="1 or "@ sign, MDDEFN is called to list the textual definition of
 

this argument. MDC0NT is called to process all other user responses
 

and to return a status indicating what is to be prompted next.
 

If the scan available flag of the control table is set and one or
 

more arguments are incomplete, the user is prompted to input &SCANX,
 

&SCANY, and &DATBX. The user may, of course, input or modify any of these
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scan control arguments directly.
 

When the user indicates that no further editing is desired, the com­

plete bit of the control table is set and the control table is packed
 

(by MDCTPK) and stored into the SMT (by MDPUT).
 

Entry point MDEDCN is called by the execution controller to complete
 

and/or modify a control table about to be used in a processor execution.
 

The control table is already in the working buffer, and split when MDEDCN
 

is called. The control table is not packed and stored into the SMT when
 

MDEDCN is exited.
 

Entry point MDCMNT is called by the cormand table editor to build
 

temporary edits. The control table is already in the working buffer and
 

split when MDCMNT is called. The "automatic" prompting loop is not
 

executed for MDCMNT, rather the user specifies all agrument to be edited. 

The control table is not packed and stored into the SMIT when MDCMNT is
 

called.
 

Output: The output from MDCNT, MDEDCN, and MDCMTM consists of a 

control table either created or modified and a flag indicating the status
 

of the routines processing. Since many routines are called, a negative
 

status will be set by the routine encountering an error; unless a fatal
 

error occurs, then the control table editor will set the status flag
 

indicating this error.
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Word 1 	 Processor Name
 

, of S = ArgumentsRevision #,Word 2 o 	 7 8 12 13 14 1516 35 

Argument Identifier (alphanumerical name)Arg. 


Entry I-Dim J-Dim Type C 1 I/0 CF 34 	 3 

D Label 	(Arg. Number) 7 Size
Data 0 17118 25 

Entry _ 

Data for this Arg. 

Label 	 17118 Size 

Data 

Control Table
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Control Table Definitions
 

Header (first 2 words)
 

# of Arguments: 	 # of arguments in this control table ( 31) 

COMP (Bit 13): 	 Is complete data specified for all arguments 
= 0, complete 
= 1, incomplete 

SCBL (Bit 14): 	 Is scan permitted
 
= 0, No 
= 1,Yes 

SCON (Bit 15): 	 Is scan active
 
= 0, No 
= 1, Yes 

Argument specifications
 

Total of 2* # of arguments words. If scan is active 6 additional
 
words of argument specifications exist.
 

I-Dim: 	 I-dimension of this argument
 

J-Dim: 	 J-dimension
 

Type: 	 2000 = user local free
 
2001 = user local integer
 
2002 = user local real
 
etc.
 

C: 	 Constant flag
 
= 0,Normal arg.
 
= 1,Constant arg.
 
= 2, Scan variable
 
= 3, Data box
 

1/0: 	 I/O flag
 
= 0, Input
 
= 1, Input/output
 
= 2, Output
 

CF: 	 Completion flag
 
= 0, Argument is currently undefined
 
= 1, Incomplete
 
= 2, Complete
 

P: 	 Print flag
 
- 0, Argument to not be prilted at execution time
 
- 1, Printed
 

I: 	 Indication 
= 0, Immediate data (=) 
= 1, Execution time data (@) RFARODU0 ILITY OF TjiR 

7.2-4 	 ORIGITNAL PAGE ISPOOR
 



Data (remainder of table consists of variable length entries)
 

Label: 	 Argument number (relative to first arg.)
 

Size: 	 # of words (including this header) contained in this data entry
 

Data: 	 for '='these are SIZE-l values 
for @' this is 'NAME' (name of SMT entry where data exists), 
type, (2000, 2001, etc.), I-Sub, J-Sub 

NOTE: 	 In the working buffer, the data area is filled from the bottom up.
 
If an argument appears in the data area more than once the data located
 
"highest" in the data area is used.
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USAGE
 ENTRY MDCNT
 

CALL MDCNT (BUFFOSTAT)
 

ARGMT I/O TYPE DIM DEFINITION
 

BUFF I I VARB INPUT BUFFER WHICH HAS BEEN PROCESSED
 

BY MDSCAN
 
STAT 0 I I STATUS OF MDCNT PROCESSING
 

OwNORMAL RETURN
 

-IFATAL ERROR
 
NEG.ERROR STATUS RFTURNED FROM
 

OTHER SUBROUTINES CALLED
 

EXTERNAL REFERENCES
 
... MDALST
 

MDCNTS
 
MDCCNT
 
MDCTPK
 
MDDEFN 
MOGET REPRODUCIBILlTI OF 
MDGETC ORIGINAL PAGE IS POOR 
MDIMS
 

MDLIST
 
MDLKUP
 
MDPRMT
 

MDPUT 
MDSPEC
 
MDSPLT
 

SEARCH
 

DIAGNOSTICS
 
*0* REVISION NUMBER OF PROCESSOR (e.o) DOES NOT MATCH
 
THAT OF CONTROL TABLE C...).
 

THE PROCESSOR'S REVISION NUMBER DOES NnT MATCH
 
THE REVISION NUMBER IN'THE CONTROL TABLE.
 

00* WARNING *** *.*... IS A CONTROL TABLE FOR ...... 

BUT THIS EDIT IILL PRODUCE A CONTROL TABLE 
FOR o 

SACoNTROL TABLE WAS--REQUESTED- FOR AN INCORRECT 
PROCESSOR
 

0*' CONFLICT BETWqEEN TYPE OF DATA INPIUT AND TYPE OF **a.. 
INCORRECT DATA SPECIFIED 

004 SUBSCRIPT OUT OF RANGE -- DIMENSION OF *..** IS ea,,, 

SUBSCRIPT OUTSIDE RANGE
 
0*0 SYNTAX ERROR -- TRY AGAIN
 

SYNTAX ERROR FOUND
 

000 COULD NOT FIND NAME IN LIST -- TRY AGAIN
 
DATA FOR NAME COULD NOT BE FOUND IN INS
 

000 TOO MUCH DATA FOR ... * ONLY ACCEPTED, ENOUGH TO FILL
 
ARRAy
 

TOO MUCH DATA WAS INPUT 
000 NOT A LEGCAL ARGID FOR PROCESSOR, 

INCORRECT ARGUMENT ID SPECIFIED FOR PROCESSOR 
*' READ ERROR IN READING FROM ON LINt, STORAGE DEVICE 

READ ERROR OCCURRED FROM RAO 

MAY NOT OUTPUT A GLOBAL IMS {St- -IE" 
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AN INS VARIABLE *AS RE9UESTED FOR OUTPUT
 

no0 06... MAY ONLY BE SPECIFIED WITH a
 

AN OUTPUT VARIABLE WAS SPECIFIED'AS AN INPUT VARIABLE
 

FATAL ERRORS
 

000 INVALID SYNTAX m*4
 
AN INVALID SYNTAX WAS SPECIFIED
 

9.0 INVALID PROCESSOR NAME 0o0 

THE PROCESSOR NAME SPECIFIED WAS NOT FOUN IN PROTAB
D 

*00 ...... TOO LARGE FOR WORKING BUFFER 

THE CONTROL TABLE FOR PROCESSOR ...... IS TO LARGE 

FOR THE WORKING BUFFER. 
0*0 READ ERROR IN MDGET so* 

READ ERROR OCCURRED IN rOGET 

*' COULD NOT FIND e..... IN I1S *** 
COULD NOT FIND DATA FOR PROCESSOR NAMFn IN IMS 

a.. COULD NOT FIND *..... IN SMT a*. 
COULD NOT FIND DATA FOR PROCESSOR NAMEO IN SMT 

0o* COULD NOT FIND DEFAULT CONTROL TARLE FOR I...a 
DEFAULT CONTROL TABLE FOR .... . COULD NOT RE FOUND 
BY MDGETC 

0*0 READ ERROR TRYING TO READ DEFAULT, CONTROL TARLE 
A READ ERROR OCCURRED VHILE TRYING TO READ A DEFAULT 
CONTROL TABLE 

o* I/O ERROR WHILE FORMATTING A PROMpT 
AN I/O ERROR OCCURRED WHILE FORMATTING A PROMPT 

*o* READ ERROR WHILE READING RESPONSE 
A READ ERROR OCCURRED WHILE READING A RESPONSE FROM 

MDPRMT 
too WORKING BUFFER OVERFLOW *0 

CONTROL TABLE WORKING BUFFER NOT LARGE ENOUGH TO 
HOLD DATA 

000 UNIDENTIFIABLE STATUs ... FROM, MOCONT 
AN UNIOENTIFIABLE STATUS VALUE WAS RECEIVED FROM 

MDCoNT 
nO ERROR WHILE WRITING TO ONLINE STORAGE 

RAD WRITE FAILED 
*00 SUB.MONITOR TABLE (SMT) FULL * 

COULD NOT ENTER SIT ENTRY 

EXTERNAL STORAGE
 
NONE 

BLANK COMMON
 
VARB 1/O
 

PROTAB I
 
PTBLEN I
 

COMMON /MDCODE/ 
ASTRSK I 
AT I 
BCKSLH I 

COMMA I
 
DOLLAR I
 
EOS I
 
EQUALS I
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NAME 
PERCNT 
QUESMK 
RPAR 
SUBS 
UPARRW 

I 
I 
I 
I 
I 

-

COMMON /MDBUFF/ 
RDATA 1/0 
MDLEN I 
SIZE I/O 

WB I/ 

LOCAL COMMON 
VARB I/O TYPE DIM LOC RELADD DEFINITION 

NONE 
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TDN 

Input: Buffer (BlUFF) 
containinq EDCMT directive 

Call SEARCH 
to find processor 
name 
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thatit is a valid processor 

CalelDGTiei 

Old o read defaut.on-

CallrkInG buffer 

cont roltable into 

n cobero lo the directve 

SMT 

workin buffer ssr 

revision ieast roeso 

eterine level of prompting by
number of *'s on the directlv.' 
image set PRIIFLG = 0, 1 or 2 

Call NDSPL to sprt 

Verify that control table in 

working buffer has soffe 
revision number as processor 

workinq buffer into specs
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MDCNTE - Control Table Editor
 

The purpose of MDCNTE is to process the values to the right of an
 

equals sign. It transfers the data values from the input buffer into the
 

control table contained in the working buffer. MDCNTA is an alternate
 

entrance and has the same purpose as MDCNTE except it processes value to
 

the right of an at (@)sign.
 

Method
 

Input: The input to MDCNTE consists of the following:
 

(a) The control table in the working buffer and the index to the data
 

entry to be filled.
 

(b) The user's edit line as output by MDSCAN and the index to the
 

next field in this buffer.
 

(c) The displacement into this data entry at which the first field
 

belongs.
 

(d) The first and second subscript limits.
 

(e) The argument completion status.
 

(f) The type of argument from argument specifications.
 

The input to MDCNTA is the same input as (a), (b), and (f)of MDCNTE plus a
 

flag designating the I/0 for the argument.
 

Processing: MDCNTE will update a control table with the values to the
 

right of an equals on a control table edit. Validity checks will be made
 

and when an error condition occurs the status flag is set accordingly.
 

It is verified that values (real, integer, Hollerith or octal) requested
 

have the correct data type specified, that inserted data may not overflow
 

the table, and that when a % or $ is requested a name must follow. It is
 

also verified that subscripts are within their defined limits. There is an
 

-exception to this test. If the subscript designates the array to be used
 

as a vector and the user has reversed the subscripts then MDCNTE will allow
 

the subscript to be processed.
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When 	a variable name is specified, MDGET is called to-get the data from
 

If the data is not found in the SMT, MDIMS is called to find the
the SMT. 


data in the IMS. If the data exists in neither area, an error condition is
 

flagged.
 

There is an alternate entrance, MDCNTA, which updates a control table
 

with fields on the right side of an at (@)sign on a control table edit. It
 

sets the data type flag to indicate temporary, user's permanent, or IMS data
 

into the control table. It also stores the subscripts into the control
 

table in the working buffer.
 

Whether the program was entered from MDCNTE or MDCNTA, a check for a
 

valid end-of-statement is made and the output data flags set before the
 

subroutine returns to the caller.
 

Output: The output from MDCNTE(A) consists of an asterisk status flag,
 

a termination indicator, a counter containing the origin displacement from
 

the first data word to the last data word filled, and a flag indicating
 

the processing status.
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USAGE
 

ENTRY MDCNTE
 
CALL MOCNTE (CTAB.CPTRiBUFFBPTR-;TDSPTrDTn;J rMCOMP.TTPE,
 

ASTATtTERMsCOUNTSTAT)
 

nEFINITION
ARGMT I/O TYPE DIM 


CTAB I I VARB CONTROL TABLE 

CPTR I I I INDEX TO THE DATA ENTRY TO BE FILLED 

BUFF I I VARB USER'S EDIT LINE AS OUTPUT BY MDSCAN 

BPTR I I I INDEX TO NEXT FIELD IN BUFF 

DISP I I I DISPLACEMENT INTO THIS DATA ENTRY AT 
WHICH FIRST FIELD BELONGS 

IDIM I I I-DIMENSION, jST SUBSCRIPT LIMIT 

JDIM I I J-DIMENSION, 2ND SUBSCRIPT LIMIT 

(IF SINGULARLY DIMENSIONED, THIS T 

THE SUBSCRIPT LIMIT) 

cOMP I I COMPLETION FLAG 
2=ARGUMENT COMPLETE 
NnT EQUAL TO 2-NOT CURRENTLY COMPLETE 

TYPE I I I TYPE OF THIS ARGUMENT (FROM ARGUMENT 
SPECS.) 

ASTAT 0 1 ASTERISK STATUS 

OmNO ASTERISKIDONE *,7=TWO *'S 
TERM 0 1 I TERMINATION INDICATOR 

OsNO BACKSLASH 

InLINE TERMINATED WITH BACKSLASH 

COUNT 0 I' I ONE ORIGIN DISPLACEMENT FROM THE IsT 

DATA WORD TO THE LAST nATA WORD 

FILLED. 
STAT 0 1 1 RETURN STATUS 

IsSIZE OF DATA IS GREATER THAN 

THE MAXIMUM SIZE 

OsAUGUMENT COMPLETE 

. 2SINCORRECT DATA TYPE 

- 3zTOO MUCH DATA INPUT 
- 'ISUBSCRIPT OUT OF RANGE 

. S=SYNTAX ERROR 

% 9.READ ERROR FROM RA 

-11 DATA NOT IN IMS 

ENTRY MDCNTA
 
CALL MDCNTA(CTABCPTRBUFF,BPTRITOFLGTYPEASTATTERMCOUNT,
 

STAT)
 

DEFINITION
ARGMT I/O TYPE DIM 


I VARB CONTROL TABLE
CTAB I 

CPTR I I I INDEX TO 
THE DATA ENTRY To BE FILLED
 

USER'S EDIT LINE AS 
OUTPUT BY MDSCAN

BUFF I I VARB 


INDEX TO NEXT FtELO-tN BUFF
BPTR V I 	 I 

I INPUT/OUTPUT FLAGIOFLAG I I 

OSARGUMENT IS INPUT
 
ISARGUNENT I5 INPUT/OUTPUT
 

2UARGUMENT IS OUTPUT
 

I TYPE OF THIS ARGUMENT IFROM ARGUMFNT
TYPE I I 

SPECS.) 

ASTAT 0 I ASTERISK STATUS 

REPRODUC rITY OF THr 
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TERM 

COUNT 

STAT 

OW 

0C 

0 -

I I 

1 

OzNO ASTERISKIUONE &'4-TWOa'S 
TERMINATION INDICATOR 
OwNO BACKSLASH 
IsLINE TERMU'NATED WITH BAcKSLASH 

ONE ORIGIN DISPLACEMENT FROM THE IST 

DATA WORD To THE LAST DATA WORD 
FILLED* 
RETURN STATUS 

ImSIZE OF DATA IS GRFATER THAN 
THE 'MAXIMUM-SIZE 

O-AUGUMENT COMPLETE 
- SmSYNTAX ERROR 

-IQ=NO DATA INPUT-ARGUMENT IS TO RE 
MARKED UNnEFINED 

-12-MAY NOT OUTPUT AN JMS VARIABLF 

GT !'INCOMPLETE--COUNT+I IS THE 
NEXT WORD OF THE ARRAY TO BE 
FILLED 

EXTERNAL REFERENCES 
MOGET 
MDIMS 

DIAGNOSTICS 
NONE 

EXTERNAL STORAGE 
NONE 

BLANK COMMON 

NONE 

COMMON /MDCODE/ 
VARB 1/0 
ASTRSK I 
BCKSLH I 
DOLLAR I 
COS - I 
HOLLRH I 
INTEGR I 
NAME I 
OCTAL I 
PERCNT I 
REAL I 
REPEAT I 
SUBS I 

LOCAL COMMON 

NONE 
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MDCNTS - Control Table Editor
 

The purpose of MDCNTS is to search a given control table for an argu­

ment identifier and return its argument specifications.
 

Method
 

Input: The input to MDCNTS consists of an argument identifier and
 

control table.
 

Processing: MDCNTS searches the control table until an argument
 

identifier match is found. The entry number of this identifier is saved
 

as the argument number. The argument number and the control table are passed
 

to MDSPEC to get the output parameters.
 

Output: The output from MDCNTS consists of the following control
 

table items:
 

Argument number
 

Type of variable
 

I-dimension (Ist subscript limit)
 

J-dimension (2nd subscript limit)
 

I/0 flag
 

Completion flag
 

@ indicator flag
 

For mote detailed information about the control table refer to MDCNT.
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USAGE
 
ENTRY MDCNTS
 

CALL MDcNTS (ARGIDCTABARGNUM.TYPEIDIMsJDIMLOFL*,COMPL.
 
ECUATSTAT)
 

ARGMT I/0 TYPE DIM DEFINITION 

ARGID I H I ARGUMENT IDENTIFICATION 
CTAB I I VARB CONTROL TABLE 
ARGNUM 0 1 1 ARGUMENT NUMBER 
TYPE 0 1 1 ARGUMENT TYPE 

IDIM 0 1 1 I-DIMENSION, IST SUBSCRIPT LIMIT 
JdOIM 0 1 1 J-DIMENSION, 2ND SUBSCRIPT LIMIT 
IOFLG 0 1 1 INPUT/OUTPUT FLAG 

o0INPUT 
ImINPUT/OUTPUT 
2-OUTPUT 

COMPL 0 1 1 COMPLETION FLAG 
OaARGUMENT IS CURRENTLY UNDEFINEU 
I=THIS ARGUMENT IS INCOMPLLTL 

2.THIS ARGUMENT IS COMPLETL 
EQUAT 0 1 1 EQUAL/AT FLAG 

OzDATA FOR THIS ARGUMENT ARE 
IMMEDIATE VALUES (-) 

l-THE DATA FOR THIS ARGUMENT ANE 
TO BE OETERMINED AT HUN TIME (AT) 

STAT 0 I 1 STATUS FLAG 
OSNORMAL RETURN 

-IRCOULD NOT FIND ARbUMENT 1.0. 

EXTERNAL REFERENCES
 

MDSPEC
 

DIAGNOSTICS
 
NONE
 

EXTERNAL STORAGE
 
NONE
 

BLANK COMMON
 

NONE
 

LOCAL COMMON
 

NONE 	 RVIPRODUIBILITlOF THE 

6101NAL PAGE IS POOR 
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MDCONT - Control Table Editor
 

The purpose of MDCONT is to process one user generated control table
 
edit.
 

Method
 

Input: The input to MDCONT consists of the user input buffer after
 
MDSCAN's processing.
 

Processing: MDCONT sets the completion flag and print flag in the argu­
ment specifications and the label (argument number) and size of data entry
 
in the data area of the control table. The argument number is found by
 
calling MDEDIT to locate the argument ID and then using this ID
as input to MDCNTS
 
to locate the argument number.
 

The size of the data entry is determined when the argument ID has been
 
previously undefined or the 
=
\@ flag has changed. When this condition occurs,
 
the data entry size is calculated in 
two ways. If the request is for an
 
equals, the size is determined by the product of the I and J dimensions plus
 
one. If the request were for an 
@ sign, the argument size is set to five. 
 For
 
an @ sign request it requires one word each for the name, type, I-dimension,
 
J-dimension, and the label. 
 If the argument ID is defined and the 
= \@ flag
 
has not changed then MDLKUP is called to look up the data portion of an argu­
ment in the control table.
 

MDCONT verifies that subscripts are within the maximum size and correctly

used. 
 It also verifies that neither an output argument nor RAD resident data
 
is specified with an equals. 
After the validation checks have been passed,
 
MDCNTE (MDCNTA) is called to update the control table with values on the right
 
side of an equals sign (at sign).
 

MDCONT also processes print requests. If arguments from the control table are
 
requested to be listed (denoted by *), MDALST is called to list them. 
If the
 
arguments are to also be listed at execution time (denoted by **), 
 then the
 
print flag is set in the control table.
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After the data has been verified, the completion flag isset inthe
 

argument specifications of the control table. The setting of the completion
 

flag isdetermined from the status returned from the other subroutines called.
 

The I and J dimensions are also set into the control table. When processing
 

is complete a status flag is returned containing the conditions found during
 

processing.
 

Output: The output from MDCONT consists of a flag containing the pro­

cessing status and the I and J dimensions for subscripts.
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USA4E 
____-- .ENtRY _MPCNT ____. ~ -----. 

CALL MDCONT (BUFFIDIMsJDIMSTATUSI
 

ARGMT i/O TyPE DIM -DEFINITION 

BUFF I I VARB THE USER INPUT BUFFER AFTER MDSCAN 
- .. ....--- -... pROCESS ING. .. . . . . .. 

STATUS 0 1 1 STATUS FROM MOCONT PROCESSING 
I - --­ . o--L~--4E)-SION--I-S--SUaScRI-P4----I- .T--

JDI 

____________ ____ 

0 

____ 

I 

_ _I 

1 

.... 

-

--

J-DIMENSION: ZND SUBSCRIPT LIMIT 
-OENITRY COMPLETE .. -........ 

ISENTRY COMPLETE BUT USER REQUESTED 
..... DtTtONAL OPpORTUNIT -FOR--INPUT 

- 2SDATA OF INCORRECT TYPE FOUND 
__._..ROMPTWI-TH ±104Mt.tNDA-.JDIt.. 
- 3TOC MUCH DATA INPUT 

ANSUB-SCRIPT -OUT- OF--RANGE-­
- SuSYNTAX ERROR. PROMPT WITH 'IDIM. 

AND 1M............-------. 
- 6INCOMPLETE AND SHOULD PROMPT FOR 

__-AOD-.NAL- VALUES---AT-- L0Ln---AND -
'jDIM SUBSCRIPTS 

.--1-sl-NVALID ARGUMENT--ID ... .. 

8WORKING BUFFER OVERFLOW 
-­ _aOsARGuMENT-tO-BE- MARKE-- A.S -

UNDEFINED 
I -c 0 - -NO-t- F-l-No--N k?4E - G-1AE L-t--II-S-T --

IQmARGUMENT MARKED AS INCOMPLETE' 
4- A -E -D-NT -PE-FI D W-ITH -a 

wj6wONLy * INPUT, REPROMPT ARGUMENT 

_ 

EXTERNAL REFERENCES 
___MfALST 

MDCNTA 

__ 
MDCNTS 

__bODED4T 
MDLKUP 

DIAGNOSTICS 

_4ERNAv.AJLS 

NONE 
RA--- - -

BLANK COMMON 

NONE 

COMMON /MDBUFF/ OBn&Wdt, )'kGEIS POOR 

ODATA 1/O 

COMMON /MDCoDE/ 

ASTRSK 
BACKSL 

I 
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LOCAL COMMON
 

NONE
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MDDEFN - Control Table Editor
 

MDDEFN, when developed and implemented, will support the "?" feature 
of
 

This feature allows the user to receive an 
the control level syntax. on-


These

line definition of any argument for the processor being edited. 


an organized RAD data base for quick
definitions are intended to be kept in 


access.
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MDEDIT --Control Table Editor
 

The purpose of MDEDIT is to process the left half of an I/0 specifica­
tion (i.e., up through the = or the @) and check its syntax.
 

Method
 

Input: The input to MDEDIT is the user's input buffer after MDSCAN ­

processing and an index pointing to the beginning location in this buffer 

from where processing is to begin. These values are passed through the 

calling sequence.
 

Processing: MDEDIT verifies the order and sequence of the parameters
 

for the argument identification, subscripts (I-Dimension and/or J-Dimension),
 
"=", and "@1 values. The argument identification must follow a "\"; if it
 
does not, then it must be the first parameter in the buffer. Any condition
 

other than the above, is flagged as an error.
 

Single or double subscripts are valid but-they may only be foliowed 

by "=". An "="means the value is the inmediate value following equals. If 

there were no subscript parameters specified, an "="or "e"is valid. An "@" 

means the value will be determined at execution time. If any other combina­

tions occur (i.e., an "" after a subscripted value), they-will be flagged 

as errors. 

Output: The output from MDEDIT consists of the argument identifier,
 

subscript(s) (if any), =/@ flag, index to the next field in the buffer, and
 

status flag for its processing. These parameters are returned through the
 

calling sequence.
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___ __ 

_ _ _ _ _ _ _ _ _ _ _ _ _ _ 

USAGE 
.....NtR. .MDEl1T -.......
 

CALL MDEDIT CBUFFBPTROARGIDSUBISUB2,EQUAT.STAT)
 

ARGMT I/O TYPE DIM DEFINITION
 

.BUr i i VARB USER'S INPUT BUFFER AFTER MDSCAN
 

BPTR I I I INDEX INTO BUFF
 
.....
.RGID -0 H --L -. ARGU.Mn--x..DENTIFIER 

SUBI 0 i 1 I.DIMENsIoN, IST SUBScRIPT LIMIT 
. - - -.---- - - NONE) 

SUB2 0 1 I J-DIMENSION, 2ND SUBSCRIPT LIMIT 
........... . .... . ...--(O.4F--NoNE) 

EQUAT 0 1 I EQUAL/AT FLAG 
.... ___E__kU-AL SIqN ENCQUJ4TEaED-­3 

I1AT SIGN ENCOUNTERED
 
jPTR o[ .L. J_iNQExI o__NAxEIELD.LtNLBUFF-

STAT 0 £ 1 
 STATUS FLAG FOR MDEDIT PROCESSING
 

.. 010&RALR--RFtURN - __ 

-5BSYNTAX ERROR
 

EXTERNAL REFERENCES
 

NONE
 

'EXTERNAL STORAGE
 

.NONE ...
 
Q~ _ _MAN_ONF__ __ _ _ _ _ _ _ _ 

AT I
RCKSLHI_
 
EQUALS I
 
NAMF- .----I­

sUBS I
 

LOCAL COMMON I ,RTO]IBYlIffY OF THE
 

NONE AL A -Trrnv.. 
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MDSPEC -'Control Table Editor
 

The purpose of MDSPEC is to return the argument specifications of a
 

particular argument of a control table.
 

Method
 

Input: The input to MDSPEC is the control table and the argument
 

number passed through the calling sequence.
 

Processing: MDSPEC calculates from the argument number the index into
 
the control table, locates, and stores data for output.
 

Output: The output from MDSPEC consists of the following control table
 

information:
 

Argument identifier (name)
 

I-dimension
 

J-dimension
 

Type of variable
 

Constant flag
 

I/O flag
 

Completion flag-


Print flag
 

@ indicator flag
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USAGE
 
ENTRY MDSPEC
 

CALL MDSPEC (CTABIARGNUMIARGID.IDIM.JDIMTYPECONST,IOFLG,
 
COMPLiPRNTFGPEQUAT)
 

ARGMT 1I/ TYPE DIM 

CTAS I I I 

ARGNUM I I I 

ARGID 0 I I 

IDIM 0 1 I 

JDIM 0 1 1 

TYPE 0 1 1 

CONST 0 1 1 

IOFLG 0 1 1 

COMPL 0 I 1 
t
PRNTFLG 0 


EQUAT 0 I 1 


EXTERNAL REFERENCES
 
NONE
 

DIAGNOSTICS
 
NONE
 

EXTERNAL 5TORAGE
 
NONE
 

BLANK COMMON
 

NONE
 

LOCAL COMMON
 

NONE
 

DEFINITION
 

CONTROL TABLE
 
ARGUMENT NUMBER
 
ARGUMENT IDENTIFIER (NAME)
 

IST SUBSCRIPT LIMIT
I-DIMENS-ION, 

J-DIMENSION, 2ND SUBSCRIPT LIMIT
 

TYPE OF VARIABLE
 
CONSTANT FLAG
 
i/0 FLAG
 

COMPLETION FLAG
 
PRINT FLAG
 
0I/ INDICATOR
 

RVRODOIBTh OF THE 

-PAGE IS POOR 
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MDALCT - Utility
 

NDALCT performs the function of the utility processor ALOCAT, i.e.,
 

allocate an array in the storage monitor table.
 

Method
 

Input: The calling arguments to MDALCT are not set up when MDALCT is
 

entered; however, they are in the working buffer and MDALOC will be called.
 

within MDALCT to set up the arguments. The calling arguments are the Ith
 

and Jth dimension, type and name of the array.
 

Processing: MDALOC must be called to set up the calling arguments.;
 

however, the name of the array was specified with an @ sign denoting to MDALOC
 

to allocate a SMT entry for the array name. This might cause an error;
 

therefore, MDALCT must modify the name, which is the fourth argument, to
 

a = sign denoting immediate data. MDALOC is then called to set up the arguments.
 

The input type representation (R, I, H or F) is changed to the internal
 

integer form. If.the array name with any type exist in the SMT, it is deleted
 

and a message is printed. In any case, a new SMT entry is allocated for the
 

-array name, type, and size. The data area for that SMT entry is set to zero.
 

Output: The output from MDALCT is an entry in the SMT for the array
 

with the given dimension, name and type With the data area cleared. A status
 

flag is also output.
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SAGE 
.ENTRY-M_ A L _T..
 

CALL MDALCT (STATUS)
 

DEFINITION
ARGMT I/O TYPE DIM 


0 I STATUS FLAG
STATUS 

- .-.. . . . .. .. . . . . .. O- .NMAL_ET UR N ..... 

>-2 COULD NOT FIND ARRAY NAME 

>5 COULD NOT DELETE PREVIOUS ARRAY 

------------ . ...... . . .....------ ~ WZ T1 A E SAME NAME. ... . . 

........
 . EXTIFRRAL REEERENCES ...... 

MDLKUP
 .......... -­
... ..... .M D A L PC 


MDFIND
 
__ 

. . . MD gLE TE __E_ 

MDENTR 

DIAGNOSTICS
 
_ ___ -tLl* TYPE t( E_EI.kD.LE__. -. c 

THE ARRAY NAME ALREADY EXISTED. THE SMT ENTRY FOR 
THE
 

AND TYPER_-AS. BEE_N--DELETED.... L.-ARRAY-NAME. 

._ _EX TIERN AL__ST _AGEi _' ..... 
NONE
 

BLANK COMMON
 

-- _.COH.N /MDJEEJ 

VARB I/O 

BOATA I 
,D ISi-ZE-_ .... 

wBUF I p]pPRODUCIB1LlTOO IG. .L pAGE~IS POOR 

LOCAL COMMON
 O
 
_ _N lN.8 .1O 
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MDCTPK - Utility.
 

MDCTPK isthe routine which packs a control table after it has been
 

split into two parts, the argument specifications and the data (see also,
 

MDSPLT).
 

Method 

Input: All input to this routine is contained in the common block 

MDBUFF and consists of: the length of the working buffer, an index to the 

data portion of the control table, the amount (inwords) used and the control 

table (inthe working buffer). 

Processing: All arguments with data in the buffer are scanned beginning 

with the one which appears "highest" in the buffer. Once an argument's data 

has been processed (i.e., moved to the area immediately below the argument 

specifications) all subsequent appearances of this argument's data are ignored. 

If an argument's data isnot complete it is ignored also. Upon completion 

of the pack, all data lies immediately below the argument specifications with 

an argument's data appearing at most once. 

Output: The output is also contained in common block MDBUFF and consists
 

of: the packed control table (still in the working buffer) and an index to
 

the first word of the argument data.
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USAGE
 
ENTRY OlDCTPK
 

CALL MDCTPK
 

EXTERNAL REFERENCES
 

NONE
 

DIAGNOSTICS
 

NONE
 

EXTERNAL STORAGE
 

NONE
 

BLANK COMMON
 

NONE
 

COMMON / MDBUFF /
 

vARB I/O 

M4DLEN I 
BDATA I 
OSIZE I 
WBUF I 

LOCAL COMMON 

NONE
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MDGETC - Utility
 

MDGETC is used to input data from files by file name. Each input results
 

in a single record being placed in a buffer supplied by the calling routine.
 

Method
 

Input: The calling routine supplies MDGETC with the name and version
 

of the file, an option flag specifying the specific action to be taken and
 

a buffer to receive the data from a sinqle logical record.
 

Processino: There are four options to MDGETC: open the file, input a
 

single record and close the file; open the file and input the first record;
 

input subsequent records to an opened file; and close an opened file. On
 

an open option MDGETC sets up the appropriate control block parameters. For
 

options using previously opened files the name and version are checked for
 

match to verify the validity of the current control blocks. Except for the
 

close option a record is input each time MDGETC is called.
 

Output: A status flag is returned indicating successful execution, read
 

error returned from the system services functions, opening of a non-existent
 

file was attempted, the logical record was truncated to the buffer length,
 

or improper input to MDGETC.
 

8.3-1
 



USAGE
 

ENTRY MDGETC
 
CALL MDGETC (FILNAM, VER, OPTION, LENGTH, BUFFER, STATUS)
 

('p ARGMT 1/0 TyPE DIM DEFINITION 

FILNAM I H I SIX CHARACTER FIELD DATA NAE
 

VER I 1 TWO CHARACTER FIELD DATA VEQSION
 
OPTION I I I INPUT OPTION FLAG
 

is OPEN FILNAM.VER, INPUT RECORD
 
INTO BUFFER AND CLOSE FiLE
 

.2, OPEN FILNAM.VER AND INPT RECORD
 

INTO BUFFER
 
.3o INPUT RECORD FROM PREVInUSLY
 

OPENED FILNAM.VER
 
.1, CLOSE PREVIOUSLY rPENED 

FILNAM.VER 
LENGTH I T I LENGTH fIN WORDS) OF RECORD To BE 

INPUT INTO BUFFER 
BUFFER 0 F LENGTH cONTENTs OF INPUT RECORD 
STATUS 0 I 1 COMPLETION STATUS 

O0, NORMAL COMPLETION 
-I, FILNAM.VER NOT FOUND 

a-2, RECORD TRUNCATED TO LEGTH 

WORDS ON INPUT 
w-30 READ ERROR 

s-+ INVALID OPTION 

.-S, FILNAMVER OF OPTION 3 OR 4 DOES 
NOT MATCH THAT OF PREVYOUS CALL 

EXTERNAL REFERENCES
 

ECLOSS TO CLOSE FILES
 
ELRSRS TO READ LOGICAL RECORDS
 
EOPENS TO OPEN FILES
 
FWKBKS TO GENERATE WALK BACKS AND TERMINATE EXECUTInN
 
MDCONV TO CONVERT FROM FIELD DATA TO ASCII
 

RESTRICTIONS
 
ALL INPUT FROM A FILE DURING ONE OPEN MUST BE ACCOMLISHED
 

VIA MDGETc.
 
ONLY ONE OPEN FILE AT A TIME IS SUPPORTED WITHIN MDcETC
 

DIAGNOSTICS
 
NONE
 

EXTERNAL STORAGE
 
THE REQUESTED 1/0 ACTIVITIES ARE ACCOMPLISHED ON TH F
 

DESIGNATED FILE
 

BLANK COMMON
 

NONE
 

LOCAL COMMON
 

NONE
 

REtPRODUCIBIIITY OF THB 
ORIGINAL PAGE IS POOR 
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MDLIST - Utility
 

MDLIST is called by the submonitor (MDSMON) to list the various data
 

elements (command tables, control tables and data arrays).
 

Method
 

Input: All input is through the calling sequence and consists of: -a
 

buffer containing the data to be listed, the-type designator of the data
 

element, the size (inwords) of the data and the data's alphanumeric
 

identifier.
 

Processing: If the type designator indicates a data array, the type
 

isfurther broken down to determine if the array should be listed in octal,
 

real, integer or Hollerith format. After performing the indicated list,
 

control is returned to the submonitor.
 

Ifthe type indicated a control table, all argument specifications are
 
listed. Any complete argument also has its current values listed. Control.
 

is then returned to the submonitor.
 

If a command table isto be listed, a heading is printed out and the
 

routine MDCMTL is called to.perform the list. Once again, control is returned
 

to the submonitor.
 

Output: There is no output from MDLIST other than the requested-listing.
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USAGE 
ENTRY MDLIST 

CALL MDLIST (BUFFTyPE,SIZENAME) 

ARGMT IO TyPE DIM DEFINITION 

BUFF I SIZE BUFFER CONTAINING DATA ELEMENT TO 

TYPE 
SIZE 
NAME 

I 
I 
I 

I 
I 
I 

I 
I 
I 

BE LISTED 
TYPE DESIGNATOR OF DATA ELEMENT 
LENGTH IN WORDS OF DATA ELEMENT 
ALPHANUMERIC DESIGNATOR OF UATA 
ELEMENT 

EXTERNAL REFERENCES
 
MOALST
 
MDCMTL
 
MDLSTH
 
MDLSTI
 
MDLSTO
 
MDLSTR
 
MDSPEC
 

DIAGNOSTICS
 

NONE
 

EXTERNAL STORAGE
 

NONE
 

BLANK COMMON
 

NONE
 

LUCAL COMMON
 

NONE
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MDLKUP - Utility
 

MDLKUP is the routine used to locate the data portion of an argument
 

in a control table.
 

Method
 

Input: The input to MDLKUP is through the calling sequence and consists
 

of: the argument label of the data to be found, the buffer containing the
 

control table, an index to the beginning word of the data portion of the control
 

table and the length (inwords) of the control table.
 

Processing: Each data sets identifier is compared to the input argument;
 

label. When a match is found, the search is terminated and the current
 

location is returned. If no match was found, an error indication is returned
 

to the calling routine.
 

Output: All output is through the calling sequence and consists of the
 

data's location in the control table and a status flag. If the status flag
 

is non-zero the location indicator has no meaning.
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UsAGE
 
ENTRY 
MDLKUP
 

CALL MDLKUP (ANUMWBUFIBDATAILDATADATADD.STATUS)
 

ARGMT 1/O TyPE DIM DEFINITION
 

ANUM I 
WBUF I 
BOATA I 

LDATA I 

DATADD a 

STATUS 0 


EXTERNAL REFERENCES
 

NONE
 

DIAGNOSTICS
 

NONE
 

EXTERNAL STORAGE
 

NONE
 

BLANK COMMON
 

NONE-


LOCAL COMMON
 

NONE
 

I I ARGUMENT LABEL TO BE LOCATED
 
I VARB BUFFER CONTAINING THE CONTROL TABLE
 
I I BEGINNING OF THE DATA PORTION OF THE
 

BUFFER
 
I I LENGTH(IN WORDS) oF THE BUFFER
 
I I LOCATION'OF THE ARGUMENT DATA
 
I I STATUS FLAG; =ORETURN OK
 

*-IARGUMENT DATA NOT
 

FOUND
 

RITRODUcQMLmj OF THE 
ORIGINMAL PAGE IS POOR 
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MDLSTH - Utility Support Routine
 

This routine will list arbitrary amounts of Hollerith data.
 

Method
 

Input: All input is through the calling sequence and consists of:
 

the argument identifier of data of the data being listed, an array contain­

ing the data and the amount of data (inwords) to be listed.
 

Processing: Ifpossible,all data isprinted on one line; if not, then
 

there are 10 words per line. The argument identifier appears on the first
 

line only.
 

Output: There is no output from this routine other than the listing
 

of data for the user.
 

-8.6-I
 



USAGE
 
ENTRY mDLSTH
 

CALL MDLSTH(NAMEARRAY.LEN)
 

ARGMT 1/0 TYPE DIM DEFINITION 

NAME 

ARRAY 
LEN 

I 
I 
I 

I 
I 
I 

I 
VARB 
I 

ARGUMENT NAME OF THE DATA TO BE 
ARRAY CONTAING THE DATA TO BE LI'STED 

AMOUNT(IN WORDS) TO BE LISTED 

LISTED 

EXTERNAL REFERENCES
 
NONE
 

DIAGNOSTICS
 
NONE
 

EXTERNAL STORAGE
 

NONE
 

BLANK COMMON
 

NONE
 

LOCAL COMMON
 

NONE
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MDLSTI - Utility Support Routine
 

This routine will list arbitrary amounts of integer data.
 

Method
 

Input: All input is through the calling sequence and consists of:
 
the argument identifier of data of the data being listed, an array contain­

ing the data and the amount of data (inwords) to be listed.
 

Processing: If possible,all data isprinted on one line; if not, then
 
there are 6 words per line. The argument identifier appears on the first
 

line only.
 

Output: There isno output from this routine other than the listing
 

of data for the user.
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USAGE
 
ENTRY MDLSTI
 

CALL MDLSTI(NAMEARRAYLEN)
 

ARGMT 1/O TYPE DIM DEFINITION 

NAME I I I ARGUMENT NAME OF THE DATA TO BE LISTED 
ARRAY I I VARB ARRAY CONTAING THE DATA TO BE LISTED 
LEN I I I AMOUNT(IN WORDS) TO BE LISTED 

EXTERNAL REFERENCES
 
NONE
 

DIAGNOSTICS
 
NONE
 

EXTERNAL STORAGE
 
NONE
 

BLANK COMMON
 

NONE
 

LOCAL COMMON
 

NONE
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MDLSTO - Utility Support Routine
 

This routine will list arbitrary amounts of octal data.
 

Method
 

Input: All input is through the calling sequence and consists of:
 

the argument identifier of data of the data being listed, an array contain­

ing the data and the amount of data (inwords) to be listed.
 

Processing: If possible, all data is printed on one line; if not, then
 

there are 4 words per line. The argument identifier appears on the first
 

line only.
 

Output: There is no output from this routine other than the listing
 

of data for the user.
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USAGE
 
ENTRY MDLSTO
 

CALL MDLSTO(NAMEARRAYLEN)
 

ARGMT l/0 TyPE DIM DEFINITION 

NAME 

ARRAY 
LEN 

I 

I 
I 

I I 

FREE VARB 
I I 

ARGUMENT NAME oF THE DATA TO 

ARRAY CONTAING THE DATA TO BE 
AMOUNT(IN WORDS) TO BE LISTED 

BE 

LI

LISTED 

STED 

EXTERNAL REFERENCES
 

NONE
 

DIAGNOSTICS
 
NONE
 

EXTERNAL STORAGE
 
,NONE
 

BLANK COMMON
 

NONE
 

LOCAL COMMON
 

NONE
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MDLSTR - Utility Support Routine
 

This routine will list arbitrary amounts of real data.
 

Method
 

Input: All input is through the calling sequence and consists of:
 

the argument identifier of data of the data being listed, an array contain­

ing the data and the amount of data (inwords) to be listed.
 

Processing: If possible, all data is printed on one line; if not, then
 

there are 4 words per line. The argument identifier appears on the first
 

line only.
 

Output: There is no output from this routine other than the listing
 

of data for the user.
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USAGE
 
ENTRY MDLSTR
 

CALL MDLSTR(NAMEARRAYLEN)
 

ARGMT I/0 TYPE DIM DEFINITION
 

NAME I I I ARGUMENT NAME OF THE DATA TO BE LISTED 

ARRAY I R VARB ARRAY CONTAING THE DATA TO BE LISTED 
LEN I I I AMOUNT(IN WORDS) TO BE LISTED 

EXTERNAL REFERENCES
 
NONE
 

DIAGNOSTICS
 
NONE
 

EXTERNAL STORAGE
 

NONE
 

N
BLANK COMMO
 

NONE
 

LOCAL COMMON
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MDPUTC - Utility
 

MDPUTC is used to output data to files by file name. Each output gen­

erates a single record from a buffer supplied by the calling routine.
 

Method
 

Input: The calling routine supplies MDPUTC with the name and version
 

of the file, an option flag specifying the specific action to be taken and a
 

buffer of data to be output as a single logical record.
 

Processing: There are four options to MDPUTC: open the file, output
 

a single record and close the file; open the file and output the first record;
 

output subsequent records to an opened file; and close an opened file. On an
 

open option MDPUTC sets up the appropriate control block parameters. For
 

options using previously opened files the name and version are checked for
 

match to verify the validity of the current control blocks. Except for the­

close option a record is created in the file each time MDPUTC is called.
 

Output: A status flag is returned indicating successful execution,
 

write error returned from the system services function or improper input to
 

MDPUTC.
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USAGE
ENTRY MDPUTC
 

CALL MDPVTC (FILNAM, VER, OPTION, LENGTH. BUFFER, STATUS)
 

ARGMT I/0 TyPE DIM DEFINITI'ON 

FILNAM I H I sIX CHARACTER FIELD DATA NAME 
VER I H I TWO CHARACTER FIELD DATA VEpSION 
OPTION I I I OUTPUT OPTION FLAG 

=to OPEN FILNAM.VER, OUTPUT BUFFER 
AS A SINGLE RECORD AND rLOSE FILE 

=2, OPEN FILNAM.VER AND OUT0 UT BUFFER 
=3, OUTpUT BUFFER INTO PREV;OUSLY 

OPENED FILNAM.VER 
u49 CLOSE PREVIOUSLY OPENED 

FILNAM*VER 
LENGTH I I I LENGTH (IN WORDS) OF RECORD TO BE 

OUTPUT FROM BUFFER 
BUFFER I F LENGTH ARRAY CONTAINING LENGTH W0RMS TO BE 

OUTPUT AS A SINGLE LOGICAL RECORD 
INTO FILE FILNAM.VER 

STATUS 0 1 1 COMPLETION STATUS 

00, NORMAL COMPLETION 
*-3, WRITE ERROR 
* INVALID OPTION 
m-S FILNAM.VER OF OPTION 3 OR 4 DOES 

NOT MATCH THAT OF PREVIOUS CALL 

EXTERNAL REFERENCES
 

ECLOSS TO CLOSE FILES
 
ELRSWS TO WRITE LOGICAL RECORDS
 
EOPENS TO OPEN FILES
 
FWKBKS TO GENERATE WALK BACKS AND TERMINATE EXECUTInN
 
MDCONV TO CONVERT FROM FIELD DATA To ASCII
 

RESTRICTIONS
 

ALL OUTPUT TO A FILE DURING ONE OPEN MUST BE ACCOMPI ISHED
 
VIA MDPUTCp
 
ONLY ONE OPEN FILE AT A TIME 15 SUPPORTED WITHIN MD 0 UTC.
 

DIAGNOSTICS
 
NONE
 

EXTERNAL STORAGE
 
THE REQUESTED I/O ACTIVITIES ARE ACCOMPLISHED ON THr
 

DESIGNATED FILE
 

BLANK COMMON
 

VARB 1/0
 

UCs 0
 
LOCAL COMMON
 

2oIGDI PNGE ISpO 
NONE ISTOi"L,-or 
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MDQUIT - Utility Routine
 

This routine performs the QUIT directive and determines if the user
 

desires to save a SMT.
 

Method
 

Input: There is no input to this routine.
 

Processing: Upon entry, the user is prompted to determine if he desires
 

to save the SMT. If he does not, control is returned to MDSMON where a STOP
 

statement is executed to terminate the session. If he does desire to save
 

the SMT, all entries prefixed by $ and % are deleted, these entries residing
 

in the IMS data base. The entries, &CMDTB and &CONTB, are deleted also.
 

Control is now passed to MDSMTW for the writing of the SMT to a file. Upon
 

return from MDSMTW, control is returned to MDSMON where execution is terminated.
 

Output: This routine has no output.
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USAGE
 
ENTRY MDQUIT
 

CALL MOQUIT
 

EXTERNAL REFERENCES
 
MOELET
 

MDPACK
 

MDPRMT
 
MOSHTW
 

DIAGNOSTICS
 
I/0 ERROR WHILE PROMPTING
 

A SYNTAR ERROR HAS BEEN ENCOUNTERED WHILE DrTERMINING
 

IF A FILE IS TO BE SAVEno
 

EXTERNAL STORAGE
 
NONE
 

BLANK COMMON 
VARB 1/O 

DBSTRT I 
NTRY I 

COMMON / MDCODE /
 

VARB I/O
 

NAME I
 
LOCAL COMMON
 

NONE
 

REPRODUCIBILITY OF THE
 
ORIGINAL PAGE IS POOR
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MDSMTW - Utility Support Routine
 

NDSMTW is a routine with two entry points. One causes the current SMT
 

to be written to a file. The other causes a user specified file to be read
 

into the SMT.
 

Method
 

Input: A buffer is passed through the calling sequence containing the
 

file name to be read from or written to. If no name is present the first
 

word of the buffer is -1.
 

Processing: If the user desires to save a file, either through the SAVE
 

directive or the QUIT directive, the MDSMTW entry point is called. A check
 

is made for the presence of a file name and, if not present, the user is asked
 

to provide one. The user must input a file name. The firs record of the
 

file, containing information concerning where the data starts, how much data
 

is present and the maximum size allowed, is written out. The data is then
 

packed and written as the second record. The file is now closed. While pack­

ing the data, there is a possibility of destroying part of the SMT in core.
 

Therefore, any portion that was destroyed is restored to the condition itwas
 

in upon entry. Control is now returned to the calling program.
 

If the user desires to read a previously saved file, either at initial­

ization time or with the RECALL directive, the MDSMTR entry point is called.
 

Once again, a check is made for the presence of a file name and, if not
 

present, the user is asked to provide one. If the user is specifying a file
 

saved under another access code, the access file (MDACCD) is read into the
 

working buffer to obtain the version the file was saved with. The first
 

record of the desired file is read into blank common. The record contains
 

information regarding the attributes of the data. If the file will not fit in
 

the current configuration the user is informed and the reading process
 

terminated. Otherwise, the second record is read into blank common, moved
 

to the bottom and each entry's address field is adjusted. The file is now
 

closed and control is returned to the calling routine.
 

Output: There is no output from either entry point (other than the file
 

read/written).
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USAGE REPRODUCIBILITY OF THE 
ORIGINAL PAGE IS POOR 

CALL MDSMTW(INPUT) 


ARGMT 1/0 TYPE DIM 
 DEFINITION
 

INPUT I I VARB 
 BUFFER CONTAINING THE DIRECTIVE
 

ENTRY MDSMTR
 
CALL MDSMTR(INPUT)
 

INPUT I I VARA 
 BUFFER CONTAINING THE DIRECTIVE
 
EXTERNAL REFERENCES
 

MDGETC
 
MDPRMT
 
MOPUTC
 
MOSPLT
 

DIAGNOSTICS
 
**COULD 
NOT OPEN AND READ ACCESS FILE*.
 

THE USER HAS SPECIFIED A SECONDARY ACCESS CODE OTHER
 
THAN HIS OWN. IN ATTEMPTING TO READ THE FILE OF
 
ACCESS CODES 
AN ERROR OCCURED. 

o.. COULD NOT OPEN AND READ ...... w STATUs a 
THE USER SPECIFIED FILE COULD NOT BE OPENED AND READ
 
INTO MEMORY,
 

soa COULD NOT 
OPEN AND WRITE TO .. o*.. v STATUS a so* 
THE USER HAS ATTEMPTED TO SAVE AN EXISTING FILE. AN
 
ERROR OCCuRED WHEN THE wRITE 
WAS ATTEMPTED.
 

'a. DATA 	BASE NOT SAVED/RECOVERED 
ANY I/O ERROR IN READING OR WRITING A FILE HAS THIS 
MESSAGE APPENDED TO IT. 

*so ERROR IN CLOSING o*....STATUS.... INTEGRITY OF DATA
 
BASE IS QUESTIONABLE
 

WHILE ATTEMPTING TO CLOSE THE 
USER SPECIFIED FILE AN
 
ERROR OCCURED.(READING ONLY)


*o* I/O ERROR IN WRITING OR CLOSING *o*, 
 STATUS-...

INTEGRITY OF FILE IS QUESTIONABLE
 

SAME AS PRECEDING EXCEPT WRITE ONLY
 
0.. LENGTH OF SAVED DATA BASE (#,s.) 
 EXCEEDS MAXIMUM (.ee.) OF
 
CURRENT CONFIGURATION,
 

AN ATTEMPT HAS BEEN MADE TO 
RECOVER A DATA AREA THAT
 
IS TOO LARGE FOR CURRENT SYSTEM SIZE
 

*00 READ ERROR IN READING DATA PORTION OF .,., ,o STATUS=,*

AN ERROR HAS OCcURED WHEN READING THE SECOND RECORD 
OF A TWO RECORD FILE, 

a.. READ ERROR WHILE READING RESPONSE 
AN ERROR HAS OCCURED WHILE PROMPTING FOR THE USER'S 
FILE NAME 

*@*-SECONDARY CODE goose, NOT FOUND
 
THE USER HAS ATTEMPTED TO READ A FILE WITH AN 
INVALID
 
ACCESS CODE
 

"'$SYNTAX ERROR--FILE NAME 
ONLY IS ALLOWED
 
THE USER HAS ATTEMPTED TO SAVE A FILE TO 
AHICH HE 	HAS
 
APPENDED AN ACCESS CODE
 

"**SYNTAX ERROR--TRY AGAIN-**
 
THE USER HAS MADE 
A SYNTAX ERROR WHEN TRYING TO
 
RECALL'A FILE.
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EXTERNAL STORAGE
 
MOACCD 

VARIOUS OTHER FILES 


BLANK COMMON
 
VARB 1/O
 

DBADDR I
 
DBMAX I
 
OBSTRT I
 
NTRY I
 
ACCCDE I
 
BDGNUM I
 
NENTR I
 
VERS I
 

COMMON / MDCODE /
 

VARB I/0
 

NAME I
 
EOL I
 

COMMON / MDBUFF /
 

VARB I/0
 

MDLEN I
 
BDATA I
 
OSIZE I
 
WB I
 

LOCAL COMMON
 

FILE CONTAINING ACCESS CODES
 
USER SPECIFIES THE NAME OF THE FILE
 
IN EXTERNAL STORAGE CONTAINING HIS
 
DATA
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MDSPLT - Utility Routine
 

MDSPLT will take a buffer and split it into two parts. It is primarily
 

used by MDCNT to separate the argument specifications and the data and by
 

MDCMT to separate the commands and the temporary edits.
 

Method
 

Input: All input to MDSPLT comes through the calling sequence and con­

sists of a buffer containing the area to be split, the length (inwords) of
 
the area, the size (inwords) of the array to be split and an index to the
 

first word of the array to split off.
 

Processing: The buffer is separated into two parts. Any unused area
 
is zeroed. The index to the array split off is calculated for output.
 

Output: All output is through the calling sequence and is the buffer
 

containing the split array and an index which points to the first word of
 

the array split off.
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U SAGE 
ENTRY MDSPLT 

CALL MDSPLT (hBMDLENSIZEBDATA) 

ARGMT 

WB 
MDLEN 
SIZE 

BOATA 

I/O 

1/O 
I 
I 

I/0 

TYPE DIM 

I VARB 
I I 
I I 

I 1 

DEFINITION 

RUFFER cONTAING DATA TO BE cPLIT 

SIZE(IN WORDS) OF WB 
SIZE(IN WORDS) OF THE PORTInN OF 

TO BE SPLIT AWAY 
INDEX To THE PORTION oF THE DATA 

BE SPLIT AWAY 

DATA 

TO 

EXTERNAL REFERENCES 

NONE 

DIAGNOSTICS 
NONE 

EXTERNAL STORAGE 
NONE 

BLANK COMMON 

NONE 

LOCAL COMMON 

NONE 
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MOTOC - Utility
 

This routine will perform the TOC directive and, in doing so, generate
 
a listing of the contents of the SMT.
 

Method
 

Input: There is
no input to this routine.
 

Processing: 
 Upon entry, the data areas are packed (MDPACK). If the
 
SMT is empty, the user is informed of such and informed of the available size.
 
Control is then returned to the submonitor (MODSMON).
 

If not empty, each SMT entry is listed. The list for each entry
 
includes: the entry's alphanumeric name, its type, its size, its 
I-dimension,
 
and its J-dimension. 
After all entries are listed, a message is printed
 
informing the user of how large the SMT area is and how much of this is
 
currently being used. Control is 
now returned to MDSMON.
 

Output: This routine has 
no output other than the user requested listing
 

of the SMT.
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UsAGE
ENTRy 
MOTOC
 

CALL MDTOC
 

EXTERNAL REFERENCES
 
MDPACK
 

DIAGNOSTICS
 
*e. SiT EMPTY
 

THE SmT To BE LISTED CONTAINS NO ENTRIES
 

EXTERNAL STORAGE
 
NONE
 

BLANK COMMON 
VARB I/0 

DBADDR I 
DBMAX I 

DBSTRT I 

NTRY I 

LOCAL COMMON
 

NONE
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MDTOC
 

MDPACK
 
Pack users data
 

areas (core & rad)
 

IsYes Output message
 

theSM indicatinq the
 

empty T is empty 
7 

No 

Extract type, name,
 
IMS type, size and
 
I and J dimensions
 
from the SMT
 

Write a message with
 
above information
 

Compute amount of SMlT
 
available and amount
 
used -- print these
 
values
 

RTURNG 

MDTOC Functional Flow Diagram
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MDUTIL - Utility Support Routine
 

HDUTIL performs the utility directives DUMP and DELETE. As more direc­
tives are implemented in the prototype, MDUTIL will take on the expanded
 
role of performing them also.
 

Method
 

Input: All input is through the calling sequence and is: the buffer
 
containing the directive and an indication of which-directive has been
 
entered.
 

Processing: If the DUMP directive has been entered, it is scanned for
 
correct syntax and the presence of an optional type flag. If the flag is present
 
the data is listed by this type. If not present, the data is listed by its
 
internal type. After performing the dump, control is returned to MDSMON.
 

If the DELETE directive has been entered, the syntax is verified and
 
the data area deleted. The user is informed of a successful deletion or of
 
the fact the area does not exist. In either case, control is returned to
 
MDSMON.
 

Output: There is no output from MDUTIL other than what the user obtains
 
by doing the directive.
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USAGE
 
ENTRY MDUTIL
 

CALL MDUTIL(DIRECTINPUT)
 

ARGMT 1/0 TYPE DIM DEFINITION 

DIRECT 

INPUT 

I 

I 

I 

I 

I 

VARB 

NUMERICAL VALUE INDICATING 

DIRECTIVE JUST ENTERED 
BUFFER CONTAING THE DIRECTI

THE 

VE 

EXTERNAL REFERENCES 

MDELET 
MDGET 
MDLIST 

DIAGNOSTICS 
9.' COULD NOT FIND ...... 

THE SPECIFIED ARRAY TO BE DUMPED COULD NOT BE FOUND 
IN THE SMT 

. DeCOULD NOT READ ...... 
THE ARRAY TO BE DUMPED COULD NOT BE READ 

* 	 INVALID SYNTAX
 
THE DIRECTIVE CONTAINED A SYNTAX ERROR
 

MDUTIL EXECUTED
 
A DIRECIVE NOT YET IMPLEMENTED IN THE MONITOR HAS
 
BEEN REQUESTED* CONTROL IS RETURNED TO MDSMON WITH
 
NO ACTION TAKEN,
 

EXTERNAL STORAGE
 
NONE
 

BLANK COMMON
 

NONE
 

COMMON / MDCODE /
 

VARB I/O
 

NAME I RE RODIBJO$fz OF THE 
UPPARW II I,,mALsPOOR 
COMMA 


COMMON / MDBUFF /
 

VARB 1/0
 

MDLEN I
 
wB
 

LOCAL COMMON
 

NONE
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SEARCH - Binary Search Routine
 

SEARCH performs an examination of an ordered (sorted) input array to
 
detect the presence of a specified entry. Examination of multiple rows of
 
the array on a prioritized basis is provided.
 

Method
 

Input: SEARCH accepts as input an ordered array of data and a column,
 
or item, to be compared to the columns of the array. The comparison is based
 
on a prioritized set of search keys also input.
 

Processing: The technique used to examine the input array is 
a binary
 
search, also known as search by bisection.
 

Output: 
 The column number of a match or a flag indicating no match is
 

returned.
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USAGE
 

ENTRY SEARCH
 
CALL SEARCH (TAB, Il, JO, NKLY, KEY. FIND, LuC)
 

ARGMT 1/0 rYPE DIM DEFINITION
 

TAB 1 1H 10,J0 ARRAY SORTED BY KEY ROWS TU BE
 
SEARCHED IN THOSE RuNS FuR THE
 
SPECIFIED ENTRY
 

ID I I I NUMBER OF ROWS IN TAb ANU LENGTH oF 
FINo 

JO I I I NUMBER OF COLUMNS IN TAB 
NKEY I I NUMBER OF SEARCH KEYS IN KEY 

KEY I I NKEY SEARCH KEYS. ROW NUMBERS OF N0S OF 
TAB AND ENTRIES OF FIND TO BE 

COMPARED (PREFIXED ITH MINUS SIGN TO 

DESIGNATE ALPHABETIC COMPARISON). 
THE SEQUENCE OF VALUES IN KEY ESTAB-

LISHES THE SEARCHING PRIORITY, IL., 

KEYCI) INDICATES THE PRIMARy, KLY(2I 
THE MAJOR, ETC. 

FIND I I,H .1D COLUMN TO BE COMPAREU TO CULUMNS OF 

TAB IN THE KEY ENTRILS 

LOC 0 I COLUMN NUMBER OF TAB MATCHING FIND 
IN THE KEY ENTRIES N ZERO IF NOT 

FOUNU 

EXTERNAL REFERENCES
 
NONE
 

RLSTRICTIONS
 
THE INPUT ARRAY OF MUST BE ALGEBRAICALLY AND/OH ALPHABETIC-


ALLY ORDLRED IN THE KEY ROWS TO BE SEARCHED.
 

MUST CORRESPOND TO
THE ABSOLUTE VALUES OF THE SEARCH KEYS 


ROW NUMBERS OF THE INPUT ARRAY
 

DIAGNOSTICS 
IMPROPER VALUE o.... FOR SEARCH POINTER .... 

Kk. YfS
THE ABSOLUTE VALUE OF THE INDIcATE ELEMENT OF 


ZERO,
 

EXTERNAL 2TORAGE
 
NONE
 

BLANK COMMON
 

LOCAL COMPION 
NONL 

OF ThRREPRODUCBILITY 
ORICINAL PAGE IS POOR 
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~Midpoint 

latch Prom too high 
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SYesT 

Reunpointer to 
matching entry 

Signal matchnot found 
Yes Maximum 

cmae 
No 
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SORT2 - Array Sorting Package
 

SORT2 and SORTI provide very fast algebraic and/or alphabetic sorting
 
of arrays based on any number of sort keys. The sorting is based on the
 

contents of specified rows of the input array.
 

Method
 

Input: The primary inputs are the array to be sorted and an array of
 
sort keys designating the rows on which to base the sort, their priority
 
(order of sorting) and which are to be sorted algebraically and which alpha­
betically. The size of the array and number of sort keys is also specified.
 

Entry point SORT2 further provides for the parallel manipulation of an
 

additional array of data during the sorting of the input array, assuming a
 
relationship exists between the entries of the two arrays.
 

Processing: The sorting algorithm is a variation of a splitting technique
 
described by R. C. Singleton, Communication of the ACM, Volume 12/Number 3/
 
March 1969, p. 85. SORT2 is an extension and generalized implementation of
 

the technique.
 

The method is the sort analogy to a binary search. First the array is
 
split and reorganized such that all "low" values are placed in the top half
 

of the array and all "large" values in the bottom. Indices bounding the
 
bottom are then saved. The top half is then split and again all "low" values
 

are moved to the top and "large" values to the bottom. Again the indices
 

of the bottom are saved. The process is continued until a top to be split
 
contains no more than three values. These are arranged in order and splitting
 

continues by retrieving a bottom section from the index queue on a last in
 

first out basis. Queue space for the bottom indices is related to the number
 

of entries by the expression
 

m = 2Q+2+ 2Q - 1
 

where
 

m is the maximum number of entries to be sorted
 

Q is the number of index pairs for which storage is provided
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Q is 14 inthe present implementation which permits an array of up to 81,919
 

columns to be sorted.
 

The technique is illustrated in the following example and the accompany­

ing flow diagram.
 

1
 

2 

3 ---Split 3 

4 Queue 3 

6 ---Split 2
 

7
 

8
 

9 Queue 2 ---Split 4
 

10 Queue 2
 
11 Number of splits = 7
 

12 ---Split I Required queue spaces = 3 

13 

14 

15 ---Split 6 

16 } Queue 2 
1
17 


18 Queue 1 ---Split 5
 

19
 i20 

21 Queue 1 ---Split 7
 

22 }Queue 1
 
/23 


Example of Splitting and Queueing an Array of 23 Entries
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Output: The output from SORTI and SORT2 is the sorted input array.
 

SORT2 also outputs the associated array which was operated on in parallel
 

with the primary array.
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OF THEREPRODUCIBILITY 
USA E 	 PAGE IS POOR

UgE1R SORIGINALENTRY SORTZ 

CALL SORT2 (Al, 1a Js NKEYS, KEYS, Big IBA 0 , BO)
 

ARGMT I/O TYPE DIM DEFINITION
 

Al I I,H IAJ ARRAY TO BE SORTED ACCORDING TO TwE 

DATA IN KEYS 
IA I j NUMBER OF ROWS IN Al AND AC 

J I I NUMBER OF COLUMNS IN Al, 6I, AO AND 
BO 

NKEyS I I NUMBER OF SORT KEYS IN KEYS 
KEYS I I NKEYS SORT KEYS. ROW NUMBERS OF ROWS OF Al 

ON WHICH TO SORT IPREFIXLD WITH MINUS 
SIGN TO DESIGNATE ALPHABETIC SORT), 
THE SEQUENCE OF VALUES IN KEYS ESTAb-

LISHLS THE SORTING PRIORITY, lE., 
KEYSCI) INDICATES THE PRIMARY, 
KEYS(2) THE MAJOR. ETC-

BI I FREE 18#J ARRAY TO BE OPERATED ON IN PARALLEL 
WITH Al 

Iii I I NUMBER OF ROVS IN B1 AND BO 
AD 0 IH .AJ SORTED ARRAY At 
BO 0 FREE IB,J SORTED ARRAY BI 

ENTRY SORTI
 
CALL SORTI (A, IA' J. NKEYS, KEYS, AO)
 

ARGMT 1/0 TYPE DIM 	 DEFINITION
 

Al I IH IA,J 	 ARRAY TO BE SORTED ACCORDING TO THE
 

DATA IN KEYS
 
IA I I I NUMBER OF ROWS IN Al AND A0 
J I I I NUMBER OF COLUMNS IN Al AND AU 

NKEYS I I NUMBER OF SORT KEYS IN sEYS 
KEYS I I NKEYS 	 SORT KEYS, ROW NUMBERS OF ROWS OF Al
 

ON WHICH TO SORT (PREFIXED WITH MINUS
 
SIGN TO DESIGNATE ALPHABETIC SORT).
 
THE SEQUENCE OF VALULS IN KEYS ESTAB-

LISHES THE SORTING PRIORITY. 1E,,
 
KEYSI ) INDICATES THE PRIMARY
 

KEYS(2) THE MAJOR, ETC.
 
AO 0 ItH IA,J 	 SORTED ARRAY At
 

EXTERNAL REFERENCES
 
NONE
 

RESTRICTIONS
 
THE ABSOLUTE VALUES OF KEYS MUST BE BETWEEN I AND J INCLUSIVE
 

THE MAXIMUM NUMBER OF COLUMNS (VALUE OF J) wHICH CAN BE
 

ACCOMODATED IS PRESENTLY DEFINE AS 40959.
 

DIAGNOSTICS 
INSUFFICIENT INDEx STACK STORAGE FOR SORTING .. ,*. ELEMENTS 

AS PRESENTLY CONFIGURED A QUEUE FOR SAVING SECTIONS TO 
BE SORTED WILL ONLY ACCOMODATE 40959 COLUMNS OF At* 

NON-VALID VALUE ,.e,. FOR SORT KEY .*., 

THE ABSOLUTE VALUES oF THE SORT KEYS MUST CORRESPOND TO 
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THE ROW NUMBERS OF Al,
 

EXTERNAL STORAGE
 
NONE
 

BLANK COMMON
 
NONE
 

LOCAL COMMON
 
NONE
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Enter 
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Ltve input arrays
 
Into output arrays
 

Sort F)O
key values 

valid 

Yes 

Lo ate aipoint (f)
and order first (1F), 
Itan las LI)points 

aier acally 

Value * No 
value of 11betwee 

F+1 and 1-1 
? 


Yes 


Value l 

value of II betwee 


if+1 and L-1 


'/ 

Yes 

Interchange two 
Identified values
 

Continue fr u 
oints of
 

interchange
 

non-valid
valuege:. Sto 

I-


Insufficient 
index stack 
storage.. 

Yes 

Value a No F to L Yes Ousue No Qlueue lower half of 
value of II betwee range 

4 full section as nemsection 
4-1 and L-I point by storinq points K41 

I and L 

Yes I 

Select new midpoint by Reset L t 11-1 
reordering Identified, 
F and N points 

Sectio Yes getrieve new F 
queued for and L points


sortingfromqueue 
Select new midoint by 
reordering identified, 
11and L points
 

Return
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DCTMOD - Library Maintenance
 

DCTMOD is a stand alone Fortran program to delete processors from the
 

MDAS catalog and to modify default control tables of processors in the MDAS
 

catalog.
 

Method
 

Input: The processor catalog file (MDTABL.MD) to have modifications and
 

deletions must reside on unit one.
 

Processing: When executed, DCTMOD brings into memory the processor
 

catalog file from unit one. The INFONET system routine OBEY is.used to open
 

the file and equate the file MDTABL.MD to unit 1. If there are new processor
 

entries indicated by the catalog key, a message is printed stating that the
 

catalog may not be modified. If there are new processor entries, they must.
 

be put in the catalog previous to a DCTMOD execution.
 

After the catalog is in memory, the user is prompted for each processor
 

to be deleted. For each name input, a search of the catalog-(PROTAB) is made.
 

If no entry was found, the user is requested to input another name. Otherwise
 

the PROTAB entry corresponding to the name is deleted and the table is then
 

packed.
 

After the user has indicated by pressing the carriage return that all
 

desired processors have been deleted, the user is prompted for each processor
 

name to modify the default control table. For each name input, a search of
 
PROTAB is made. If no entry was found, a message is printed and the user is
 

requested to input another name. Otherwise, MDBULD is called to interface
 

with the user in modifying the default control table. After the user has
 

indicated that all desired processor default control tables have been modified,
 

DCTMOD then writes the updated processor catalog back to unit one. The INFONET
 

routine OBEY is used to close the file MDTABLJD equated to unit one. Execution
 

of BCTMOD is then terminated.
 

Output: The update processor catalog file (MDTABL.MD) will be placed back
 

on unit one.
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http:MDTABL.MD
http:MDTABL.MD
http:MDTABL.MD
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Read the processor name[
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SEARCHthe 
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MDADDR - Library Maintenance Processor
 

MDADDR is an extension of the library maintenance programs MDGENR,
 
DCTMOD and MDUMPC. Its execution is triggered by the boot logic when changes
 
to the library are detected during catalog loading (see Boot Logic (MDAS)),.
 
MDADDR integrates these changes into the library catalog and produces an
 

updated catalog.
 

Method
 

Input: The primary inputs to MDADDR are the library catalog and catalog
 
control keys as loaded by the boot logic. The control keys indicate the
 
original catalog prior to the library maintenance activities and the area
 
containing new processor data. Also input are the swap area sizes and origin
 
addresses of the SMT and ephemeris buffer.
 

Processinq: MDADDR and its associated routines are designed for use by
 
subsystem maintenance personnel, therefore special log-on access codes are
 
required in order to proceed with the library maintenance process. Each new
 
catalog entry is examined in turn to determine whether or not it refers to
 
the submonitor (MDSMON) or MDADDR itself. 
As shown in Figure 2 of Appendix
 
C these data share the first catalog entry and thus are handled separately
 

from other catalog entries.
 

Processor entries are compared with the list of existing cataloged
 
processors and the default control table maintenance routine MDBULD is invoked
 
to build or modify a default control table. The catalog data for the processo
 
is then moved to an appropriate location in the catalog which.is then re­
sorted alphabetically, if necessary.
 

These-procedures result in reduction in the amount of memory occupied
 
by the catalog as new data for existing processors are moved into the catalog.
 
To maximize SMT size the origins of the ephemeris, buffer and SMT are adjusted
 

to utilize the vacated area.
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The finalized catalog is output to the file MDTABL.MD destroying the
 
previous catalog. Library maintenance thus completed,MDADDR verifies the
 
adequacy of the swap area for loading the submonitor and returns to the
 

resident.
 

Output: MDADDR outputs the updated catalog to memory and mass storage
 
and adjust the origins of the ephemeris buffer and SMT as appropriate.
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CALL MDADDR
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MDBULD - Library Maintenance
 

The purpose of MDBULD is to build a default control table for the pro­

cessor requested. It also updates the default control table length, argument
 

definition length, and processor revision number in the PROTAB.
 

Method
 

Input: The input to MDBULD consists of the entry number of the processor
 

in the PROTAB (system directory) and flag designating whether this processor
 

is a new or existing one. These inputs are passed through the calling seq­

uence.
 

Processing: MDBULD, if the default control table does not need modifica­

tion, moves the old PROTAB default control table length, argument definition
 

length, and revision number into the new PROTAB entry for the processor. If
 

the request was for a modification, SEARCH is called to find the processor in
 

the PROTAB and the values updated.
 

If a modification was requested for the default control table, then
 

MDGETC is called to get the existing default control table for the requested
 

processor. By a series of calls to MDPRMT, the user is prompted for the
 

information needed to update or build the argument specifications portion of
 

the default control table. The user may input the following parameters for
 

the default control table: the revision number, number of arguments, and
 

scan flag for the label field, and the argument identification, I-dimension,
 

J-dimension, type, constant argument and I/O flag for each argument. If the
 

user does not input a value, the value will not be changed or reinitialized.
 

The data completion and argument completion flags are set in the control table
 

according to the status of the data.
 

If there is a request to list the table, MDLIST is called to display
 

this data. Since the argument specifications and the data are packed together
 

when residing on disc, MDSPLT is called to separate them for storage in the
 

working buffer. After the control table has been updated or built, if there
 

is a request to edit it,MDEDCN is called. If no further modifications are
 

desired, MDCTPK is called to pack the argument specifications together with
 

the data before MDPUTC is called to write this information on disc.
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Output: The output from MDBULD is an updated PROTAB and an updated or
 

newly built default control table.
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USAGE 
....AEN RlaHauLD- - -

CALL MDBULD (KEYFLAG)
 

ARGMT I/O TYPE DIM DEFINITION
 

KEY I I I KEY IS THE PROTAB ENTRY NUMBER OF THE
 
__--p-ROCE.SSR--......-.
 

FLAG I I FLAGRO INDICATES THIS IS A NEW
 
_______-- ___-- Sb T A~G-N---?iU*L---; - NP 4*A<-T E5-

THIS IS AN EXISTING PROCESSOR
 

EXTERNAL REFERENCES
 

MDEDCN
 

MDLIST
 
..-- . . ..ill Pfl.. _ _ _--

MDP-UTC
 
_ _ _ - -_.f S P- . _.
 

SEARCH
 

DIAGNOSTICS
 

A DUPLICATE ARGUMENT IDENTIFIER WAS FOUND
 
RE AD--RR-OR-WH-I-L kE-A+ N4 --RaES -G-US ... ..... .... . 

AN ERROR OCCURRED WHILE PROMPTING 
-- SSI-OHCONCLU D--D--n F-A-UL L TABLE -GENERA-T-ED...... 

___-o~ 

AA_______n CON 
AN ERROR OCCURRED WHILE PROCESSING THIS DEFAULT 

-,rO-- TROL AT4fB!A - N O -I--.A ULT-4- N-T-R-OL--T-k-E--- i- G---A-T-ED ....... 

pr.QRE
ErX-TERNAL 


NONE
 

vARB I/0
 

.PROTAB I/0
 
PTAI FNI
 

FOMKtiltLJtODE/
 

Fog I.
 

INTEG I
 
NAME T 

OF THEREPRODUCIBILITY 

u-&i7TL PGE....93---

DSIZE a
 

0 3 
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MDGENR - Library Maintenance
 

IDGENR is used to add a processor to the library or replace an old
 

version of a processor with a new one. It records the appropriate infor­

mation in the librarv catalog and generates a file of absolute code for
 

use by the MDAS resident in loading the processor.
 

Method
 

Input: At the time of execution MDGENR is complete and requires no
 

additional data for updating the library. It does read the catalog key
 

record (first record) in order to update it with information pertinent to
 

the new processor absolute file being generated.
 

Data relative to the processor involved is assembled into MDGENR
 

(see USAGE).
 

Processinq: The name and entrv point of the appropriate processor are
 

assembled into MDGENR followed by a link edit which results in a load module
 

headed by MDGENR with the processor and all supporting routines assigned to
 

specific memory locations. MDGENR is precisely the size of the resident
 

I-bank, thus the region assigned to the linked processor corresponds to the
 

area in the I- and D-banks reserved for the swap area by the resident. The
 

following figure illustrates the correspondence between MDGENR and MDAS
 

memory-allocations.
 

Externally defined symbols in MDENDL are used to determine the extents
 

of the processor. This data is used to compute the lengths of the processor
 

areas which together with beginning addresses are written to the catalog (see
 

Figure C-2). The catalog key record is updated with the number of presently
 

defined new library entries and a pointer to the entry corresponding to a
 

new version of the MDADDR maintenance processor if one exists.
 

A new file is output containing two records. The file, named with the
 

processor name and a version of MD, contains a record each for the processor
 

I- and D-banks beginning at the origins of the swap area and equal to the
 

processor lengths.
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Output: The library catalog is updated and a new processor absolute
 

file created. The swap area extents (last required I-bank and D-bank
 

addresses) necessary for processor loading are output to the terminal.
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USAGE
 

THERE ARE TWO PROCEDURES FOR INVOKING MOGENR. THE FIRST IS USFD
 
WHEN PROCESSORS ARE TO BE ADDED OR CHANGED AND THE- SECOND WHEN
 
UTILITY PROCESSORS CONTAINED WITHIN THE SURMONITOR ARE INVOLVEn.
 

INVOKING MDGENR FOR PROCESSORS
 

!EDIT MDGENR MOGENP
 
AR T PRONAM:'...fl., ,E (SUPPLY PROCESSOR NAME AN]n
 
AR T PROENT:...... E ENTRY NAME, SEE PvSTRIcTIONS)
 
AQ
 

!SAS,N MDGENP
 
!GSLINK,WRITE,MOREMAP MDGENP
 

AINCLUDE .,.. (SUPPLY REQUIRED BLOCK DATA NAME) 

AA:SEGMENT 
AINCLUDE MDENDL 
aEXIT
 
!MDGENP
 
!CHANGE MDGENP-PNC ACCESS:REPL
 

!UNLOAD
 
!DROP,EVERY MDGENP
 

INVOKING MDGENR FOR MONITOR CONTAINED UTILITY PROCESSORS
 

!EDIT MDGENR MDGENP
 
AR T PRONAM:'...*... E (SUPPLY PROCESSOR NAME)
 
AR T PROENT:MDENDLE
 
AR A AqT-l:OE
 

AQ
 
ISAS.,N MDGENP
 
!GSLINK.!RITE MoGENP
 
!MDGENP
 
!CHANGE MDGENP-PNC ACCESS:REPL
 
!UNLOAD
 
!DROPEVERY MDGENP
 

EXTERNAL REFERENCES
 
ECLOSS TO CLOSE FILES
 
ECTSOS TO OUTPUT TO TERMINAL
 
ELRSRS TO READ LOGICAL RECORDS
 
ELRSVS TO WRITE LOGICAL RECORDS
 
EOPENS TO OpEN FILES
 
EROOLS TO TERMINATE EXECUTION
 

ETRUNS TO TRUNCATE FILES
 
MDENDD TO LOCATE END OF ALLOCATED D-BANK
 
MDENDI TO LOCATE END OF ALLOCATED I-BANK
 
SUBSYSTEM PROCESSOR-To BE ADDED OR MODIFIED
 

RESTRICTIONS
 
WHEN PERFORMING THE DESIGNATED EDITS OF MoGENR THE NAME IN
 
1 MARKS SHOULD BE BLANK FILLED To THE RIGHT TO ASSURE SIX
 
CHARACTERS. THE EDIT REVISIONS SHOULD ECHO THREE. TWO AND
 
ONE LINES OF CODE IN TURN.
 

REPRODUCIBILITY OF THE 
9.4-4 ORIGINAL PAGE IS POOR 
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THE FOLLOWING SYMBOLS ARE USED IN MDGENR CODE AND, THUS MUST
 
NOT APPEAR AS THE PROCESSOR ENTRY POINT NAME.
 
AO-AI5, ADRNAM, BI-BIS, BLDASC, CRES, tOUT, ERMSG, ERROR,
 
VILNAM, HI, H21 IOUT, LDOcB, L'DUCB, M, MDENoD, MDENDI,
 

MDFSTo, MDFSTI, MDGENR, MSG, MSGZ, PTFM, PTPK, TABUFF, TBOCB,
 
TBUCS. UTILI, JTIL2, XH2, XM
 

MDGENR UPDATES THE CATALOG FILE MQTABL.MD ON-WHICH EVER
 
INFONET LIBRARY IT IS FOUND. IT WILL NOT WRITE INTO LIES
 
UNLESS THAT IS THE ORIGIN OF THE FILE.
 

DIAGNOSTICS
 
OUTPUT ERROR, ERROR I IN Al
 

AN ERROR HAS OcCURRED DURING OUTPUT or THE CATALOG OR
 
PROCESSOR FILE. THE SYSTEM RETURN CODE IS, CONTAINED IN
 
REGISTER AI.
 

..... COPIED TO LOAD FILE EXTENT I .,... 0 s.9. 
THE DESIGNATED PROCESSOR HAS BEEN OUTPUT TO THE LIBRARY 
THE LAST ALLOCATED ADDRESSES OF THE I- AND 0-BANKS ARE 
SPECIFIED.
 

EXTERNAL STORAGE
 
THE FILE MDTARL.MD IS MODIFIED TO REFLECT THE PROCESSOR FILE
 
CREATED, A FILE NAMED AFTER THE PROCESSOR WITH VERSION Mr IS
 
OUTPUT.
 

BLANK COMMON
 

NONE
 

LOCAL COMMON
 
NONE
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MDIMS - IMS Interface
 

MDIMS is intended to be the Primary subroutine of the MDAS/IMS interface
 

component. Since there is no interface with IMS in this prototype, this com­

ponent does not currently exist. However, one array of data (GLOCON) which
 

will eventually originate in It-S is emulated by MDIMS.
 

Method
 

Input: The input to the IMS interface comoonent will consist of primarily
 

the name and type of the desired data. Optionally, the subscript(s) specifying
 

a displacement into the desired array may be input. The calling component
 

may also provide the IMS interface component with a buffer for the data re­

trieved as well as an indicator of its length.
 

Processino: There are two entries into the IMS interface component.
 

MDIMS is called to retrieve a particular element from IMS, move the data into
 

a designated buffer, and create an SMT entry for this'data element. MDIMSI is
 

called to retrieve a particular data element from IMS and create an SMT entry
 

for it.
 

In the current much simplified version of MDIMS only one data element is
 
"retrieved" from IMS. The global constants array (GLOCON) is-stored here and
 

moved to the SMT when either MDIMS or MDIMS] is called. All other calls to
 

the existing IMS interface cause an error message and return a status indicat­

ing that the requested element was not found in IMS.
 

Output: When the MDIMS entry is called a buffer is returned containing
 

the data element requested. When either MDIMS or MDIMSl are called the SMT
 

directory and data area are updated via a call to MDPUT in order to enter
 

the new data element. -Astatus flag is returned when either entry is used.
 

The status will indicate data successfully "retrieved" from IMS, data not
 

found in IMS, or error returned from MDPUT.
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USAGE 

ENTRY MDIMs
 

CALL MDI M S (NAME, TYPE, IDIM, JOIMI MAX, BUFF, SIZo STAT)
 

ARGMT i/O TYPE DIM DEFINITION 

NAME I HOLL I NAME OF THE VARIA3LE TU bE kLTNILV-

TYPE I I I 
ED 
TYPE OF THE VARIABLE Tu BE HLTrILV-

ED 
loIM I I I I-SUBSCRIPT USED TO DETEkMINL F*ItST 

WORD OF RETRIEVED VARIAbLE TO OE 
TRANSFERRED TO BUFF. 

JoIN I I I J-SUBSCRIPT USED TO UETLHMINL FIST 
wORD OF RETRIEVED VANIABLE Tu BE 
TRANSFERRED TO BUFF. 

MAX I I I MAXIMUM NUMBER OF WURDS TO bL TRANS-

SIZE 0 I I 
FERRED INTO BUFF, 
NUMBER OF WORDS ACTUALLY TNANbFLRRLU 

STAT 0 1 1 
INTO BUFF, 
RETURN STATUS FLAG 
* -1 => VARIABLE NOT FOUND IN iMS 

ISGLOCON IS THE ONLY AVAIL-
ABLE IMS VArCIABLE CUkf ENTLY) 

*0 W> O.K. 
OTHER "l ERROR RETURNEd FRUM STUXAiL 
MONITOR (MOPUT). VALUE I I LL5s 
THAN MDPUT'S STATUS, 

ENTRY MDIMSI 

CALL MDIMSi ('AME, TYPE, STAT)
 

NAME I HULL I NAME OF THE VARIABLE TO BE fETRILV-


ED
 
TYPE I I I TYPE OF THE VARIABLE TU BE RETHILV-


ED
 
STAT 0 I 1 
 RETURN STATUS FLAG
 

-1 m> VARIABLE NOT FUUND IN IMS
 
(SGLOCON 15 THE ONLY AVAIL-

ABLE IMs VARIABLE CURNENTLy)
 

•0 a> O.K.
 
OTHLR m> ERROR HETURNEU FROM SlONAGL
 
MONITOR (MDPUT). VALUE 1S 1 LESS
 
THAN MOPUT'S STATUS,
 

MDPUT
 

DIAGNOSTICS
 

*40 	MDIMS CALLED FOR TYPEx
 
INDICATES THAT AN ATTEMPT TO RETRIEVE DATA
 
FROM THE NON-EXISTENT IMS INTERFACE HAS BtEN
 
MADE
 

*O* 	MDIMS CALLED-- NAME. TYPE=
 
lDIM. JDIM= MAAS
 

INDICATES THAT AN ATTEMPT TO RETRIEVE DATA
 
FROM THE NON-EXISTENT IMS INTERFACE HAS BEEN
 
MADE
 

101ODUoBTtt I POOP 
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EXTERNAL STORAGE
 
NONE
 

BLANK COMMON
 
NONL
 

LOCAL COMMON
 
NONE
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MDLOGO - Access Control
 

MDLOGO is the routine which controls use of the system and provides a
 

measure of security for user created files. It also creates new entries in
 

the access files when a user "logs on" the system for the first time.
 

Method
 

Input: MDLOGO has no input.
 

Processino: Upon entry, the user is prompted for an access code. The
 

access file (MDACCD) is next read into the working buffer. The first record
 

contains the number of active users and the total number of available codes.
 

The second record contains the file identifier (version), the key (index)
 

to the information file (MDUNIF), and both parts of the access code for each
 

user. In addition it has all unassigned file versions and keyes with space
 

reserved for future access codes.
 

If the user has entered a code which matches one in the file, control is
 

returned to the calling routine and system operation begins. If the code
 

does not match any in the file, the user is asked if he is a new user. If
 

he is not, an access code must be entered which matches a previously defined
 

one. A maximum of three attempts is allowed for the matching of an access
 

code. When three attempts have failed, execution is terminated and control
 

returned to the INFONET operation system.
 

When a user "logs on" the system for the first time, he is given a two
 

character code which is used as a file identifier. In addition, he is asked
 

to provide his name and organization which are inserted into the keyed infor­

mation file (MDUINF). The access file (MDACCD) is sorted alphabetically on
 

the first portion of the access code. Control is now returned to the calling
 

routine and actual MDAS execution begins.
 

Output: All output is contained in the intramonitor communications area
 

of blank common and consists of: the number of active users, the current
 

users file identifier, and both parts of his access code.
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Contents
Record 

Number 
 Word 1 
 Word 2
 

Number of I Maximum # 
1 (2 words) Active codes of codes 

Word 1 Word 2 Word 3
 

2 1 Assigned record i 2 6 character 6 character 
(3*N words) 2 # in INFO iChar. field data access field data code
 

3 File Iversion code assigned by consisting of an
 
I codes the user organization code
 
I (FLDATA) (e.g., T = TRW,


L = LEC, etc.)
 
followed by the 5
 
digits of the users
 
badge number
 

M
 

N 

Access Code File (MDACCD.MD)
 

Record
 
Number Words 1 and 2 Word 3 Word 4
 

1 (4 words) Last Name (max. 12 characters) Initials Organization 

2 Last Name jInitials Organization 

N 

User Information File (MDUINF.JD) 
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USAGE
 
ENTRY MDLOGO
 

CALL MOLOGO
 

EXTERNAL REFERENCES
 

MDGETC
 
MDPRMT
 
MDPUTC
 

SEARCH
 
SORTI
 

RESTRICTIONS
 

MDLOGO WILL NOT MAINTAIN FILE INTEGRITY IF TWOOR MORE, NFW
 
USERS ATTEMPT To LOG-ON THE SYSTEM SIMULTANEOUSLY,
 

DIAGNOSTICS 
ACCESS CODE OF ' IS AGAIN,.., 1*o"NOT UNIQUE---TRY 

A NEW USER HAS ENTERED AN ACCESS CODE oF WHICH ONF 
PORTION OF THE CODE ALREADY EXISTS 

ACCESS TABLE 15 FULL-SOMEONE MUST BE DELETED BEFORE ANY NIEW 
USERS MAY COME ON THE SYSTEM. 

ALL AVAILABLE SLOTS FOR ACCESS CODES ARE BEING USFD, 
EITHER DELETE A USER OR INCREASE THE SIZE OF THE 
AVAILABLE NUMBER OF ACCESS COnES 

ERROR WHEN ATTEMPTING TO READ OR WRITE ACCESS FILE. 
AN ERROR OCCURED IN ACCESSING MOACCD--NEED TO VERIFY 
THE VALIDITY OF THE FILE 

*1/0 ERROR WHILE PROMPTING FOR BOOKKEEPING INFoRMATION 
PLEASE NOTIFY IDAS PROGRAMMING PERSONNEL 

WHILE QUESTIONING FOR A NEW USERS ORGANIZATION OR 
IS
NAME A PROMPTING rRROR OCCURED, THE USFR ALLOWED
 

ON THE SYSTEM AND HIS VERSION IS CREATED: HOWEVER,
 
THERE IS NO ENTRY IN MDUINF FOR THIS USER.
 

**SYNTAX- ERROR-ACCESS CODE HAS FORM CCCCCC.ARBABA
 
TYPE IN 	? FOR A FULL EXPLANATION OF FIELDS
 

THE USER HAS MADE A SYNTAX ERROR WHEN FNTERING HI4
 

ACCESS CODE. ENTERING A ? GIVES A'FULL EXPLANATION
 
OF THE NECESSARY SYNTAX
 

"OSYNTAX ERROR ON INPUTTING NAME
 
AN ERROR OCCURED IN THE SYNTAX OF THE USER'S NAME.
 

EXTERNAL STORAGE
 

MDACCD ACCESS FILE CONTAINING FILE VERSIONSA
 

KEYS TO MDUINF.AND ACCESS CODES
 
MDUINF INFORMATION FILE CONTAINING EACH
 

CURRENT USER'S NAME AND ORGANIZATION
 

BLANK COMMON
 
VARB I/O
 

ACCCDE 0 
BDGNMB 0 
NENTR 0 

YT)MU1mTY OF TO 
11.1-3 (11l ,dljT'1. POOR, 



COMMON / MDCODE /
 

VARA I/O
 

COMMA I
 
EOL I
 
NAME I
 
QsTION I
 

COMMON / MOBUFF / 

VARB I/O 

WB I
 

LOCAL COMMON
 

NONE
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SSORT1 
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MDELAC - User Accounting Files Maintenance Program
 

Purpose
 

Users of MDAS are uniquely identified by access code and badge
 
number (see MDLOGO). Two accounting files are maintained which contain
 
all Kacessary information regarding the access process. MDELAC is an
 

auxiliary program which facilitates the maintenance of the files.
 

Method
 

Input: The operation to be performed by MDELAC, initialize files,
 

delete user codes, or list the files, is input following prompts from
 

the program. Specification of codes to delete is prompted following
 

entry of the deletion mode.
 

Processing 

The purpose of the initialization option is to purge the access 
code file such that only the MDAS maintenance code remains active. 
To accomplish this objective a file with the name MDACCD.MD of the 

following structure and content is created: 

Word 1 Word 2 
Record 1 1 163 - Number of active codes 

and maximum number of 
codes. 

I UPTE CC2 
2 PE 

I 
3 PF 
4 PG 

21 Py
22 PZ 
23 'QE 
24 ' Z ' 

161 NQ1
 
162 WR
 
163 ' WS
 

http:MDACCD.MD


In addition, keyed record number one of the keyed file MDUINF.MD
 

is filled with the following text:
 

Word 1 Word 2 Word 3 Word 4 

MAINTE I NANCE blank TRW 

The user code deletion option accesses the access code file
 

MDACCD.MD and, under user control, deletes the requested codes from
 

the list active access codes. A new file containing the remaining
 

valid code is output.
 

Output Except for the list option, MDELAC outputs the accounting
 

files MDACCD.MD and MDUINF.MD.
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USAGE
 

ENTRY MDELAC
 
EXECUTE THE GPS COMMAND !MDELAC
 

THE INPUTS TO MDELAC ARE AS FOLLOWS
 

AINIT CAUSES THE ACCOUNTING FILES TO BE PURGED ACCEPT FnR
 
THE MDAS MAINTENANCE ACCESS CnDE
 

ADEL ENTERS A MODE OF DELETING INDIVIDUAL USER ACCFSS
 

CODES VIA THE.FOLLOWING INPUTS
 
CCCCCC CODE TO BE DELETED
 
ABBBBB BADGE NUMBER OF USER
 
#QUIT EXIT CODE DELETION MODE
 

ALIST DISPLAY THE ENTIRE ACCOUNTING DATA CONTENTS
 
AQUIT TERMINATE EXECUTION OF MOELAC
 

EXTERNAL REFERENCES
 
MDGETC, MDPUTC. SEARCH, SoRTI
 

DI.AGNOSTICS 
USER , NOT IN SYSTEM 

THE ACCESS CODE/BADGE NUMRER IS NOT AMONG THE ACTIVE 

USER CODES. 
ERROR IN .. *,. STATUS = 

MDGETC OR MOPUTC RETURNED THE INDICATED 'STATUS. REFERR 

To THE APPROPRIATE DOCUMENTATION FOR EXPLANATION. 

EXTERNAL STORAGE
 
MOELAC INPUTS. MODIFIES AND OUTPUTS THE ACCES"S CODE FILE
 
MDACCDMD AND THE USER IDENTIFICATION FILE MDUINF.MD, UNIT I
 
IS TEMPORARILY EQUATED TO MDUINF.MDO
 

BLANK COMMON
 
NONE
 

LOCAL COMMON
 
NONE
 

RFTRODUCIBIIY OF 
ORIGINAL PAGE IS POOR 
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Set header
 
record contents
 
(Ientry, maximum
 
of 163)
 

Define first 
access code 
for DAS 
maintenance 

Generate
 
record number]
 
version IDwords
 
for the sequence 
2/PE, 3/PF .... 
22/PZ, 23/QE 
... 163/14S 

IIDPIJTC 

Output access 
code file and
 
close
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Appendix A
 

Cross Reference of all Monitor Subroutines
 



Routine Referencing Routines
 

MDADDR 

MDALCT MOSMON. 
MDALOC MDALCT. 

MDALST MDCNT * 
MDBCDI MDCDAT,
 
MDBCI2 MDSCAN,
 
MDBULD DCTMOO. 

MDCDAT MDSCAN.
 
MDCMNT MDCMT
 
MDCMT MDSMON.
 
MDCMTG MDSMON,
 
MDCMTL MDCMT , 

MDCMTS MDCMT . 
MDCMTV MDSMON.
 
MDCNT MDSMONt.
 
MDCNTA MDCONT.
 
MDCNTE MDCONT.
 
MDCNTM MDCMNT.
 
MOCNTS MDALOc. 

MDCONT MDCNT
 
MDCONV MDELET. 

MDCTPK MDALOC. 

MDDEFN MDCNT
 
MDEDCN MDBULn. 

MDEDIT MDCONT.
 
MDELET MDALCT. 

MDENDD
 
MDENDI
 
MDENDL
 
MDENTR MDALCT, 

MDFIND MDALCT. 

MDGET MDCMNT. 

MDGETC MDBULO, 


MOSMON,
 
MDCONT, 


MDADDR.
 

MDLIST, 

MDCMTG. 


MDCNT * 

MDGETC. 

MDBULD. 


MDSMON,
 

MDALOC. 


MDALOC. 

MDALOC. 

MDCMT .
 
MDCMNT, 


Aj. 

MDLIST. 

MDSMON. 
MDSMON. 

MDCONT. 

MDPRMT, MDPUTC. MDSMON, 
MDCNT 

MDCMNT. MDPUT ° MDQUIT. MDUTIL, 

MDPUT 
MDCMTG. MDELET MDGET , MDPUT MDSMON, SMPRTP. 
MDCNT . MDCNTE. MDSMON. MDUTIL. 
MDCNT , MDELAC, MDLOGO. MDSMON. MDSMTW. 



MO I PCO 
MONS 
MOIMSI 

MOCNT 
mDAL.Or. 

Mt)fNTE* 

MOLIST 
MOLKUP 
MDLOGO 
MOLSTH 
MOLSTI 
MDLSTO 

MOBULn. 
MI)ALCT. 
MDADDQ. 
MDALST. 
MDALST* 
MDALST. 

MDCNIT 
MDALOC. 
MDSmON# 
moCMTLO 
MDCMTL, 
MDCMTL* 

MDUTIL* 
MDALsT. 

MOLIST* 
MOLIST. 
MULIST. 

MDCNT MDCONT. 

MDLSTR MDALST. MDCMTL* MDLIST* 
MOMERG 
MOPACK 

MDSMON#, 
MDENTP. MOGUIT, MDROLL, MDTOC 

MDPCK MDCDAT. MDSCAN* 
MDPRMH MDALST* 
MDPRMI MDALST, 
MDPRMR 
HOPRMT 

MOPUT 
mDPUTC 

MDALST. 
LPSVFI. 
mOWITd 
MDALOC. 
HDALOC. 

MUSMON, 
MDCMNT, 
MOBULO, 

MDALST. 
MQSMTW*j 
MUCHT o 
MDELAC* 

MDBULD* 
MDPRMR* 
MDCNT * 
MDLOGOO 

MDCMT . 

MDIMS * 
MOSMTW* 

MDCNT MDLGGO* MDPRMH* MUPRMII 

MDQU IT MIDSMONIt 
MDRADI MOGET . 
MDRADO MOPUT * 
MOROLL MDALOr, 
MDSCAN MDPRMT. 
mDsmoN MDAS 
MDsmTR MDSMOM, 
MDsmTW 
MDSPEC 
MDSPLT 

MDQUIT, 
MDALOC* 
MOBULn* 

MOSMON.
MDCNT . 
MDCMT * 

MDCNTS# 
mDCNT 

IST.MDL 
MDSmON. MDSMTWO 

MDSQZR MDBCDT* mDCDAT* 

MOTOC MDSMON, 
MDUTIL MDSMONI* 
MDVCMD MDCMT . MOSMON. 

08EY 

SEARCH 

OCTMOT). 

DCTMOn-

MDADDR* 

MDADDR# 

MOELAC* 

ML)HULD. 

MDELETo 

mDCMNT* 

MDLOGO* 

MDCNT * 

MOGUTT. 

mDELAC. 

MDSMON* 

MDFINDo MDLOGO* MOSMON 



SORTi MDADDP. MDCMT * MDELAC. MDFIND. MDLOGO MDPACK. 
SORT2 

UPDATE MDLOGO. 



Appendix B
 

Gommon Blocks
 



COMMON /MDCOOE/ ALLOCATION
 

VARB 

NAME 

REAL 

INTEG 

DBLE 

TYPE 

I 

I 

I 

I 

DIM LOC 

I c0 DE(1) 

1 CoDE12) 

I CODEt3I 

I CODE(q) 

RELAUD 

0000 

0001 

0002 

0003 

EOS I coDE(S) 000 

HOLL 

OCTAL 

LPAR 

RPAR 

DOLLAR 

AT 

PERCNT 

COLON 

APOSTR 

EQUALS 

MINUS 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I CODE(6) nob 

CODE(7)" 0006 

I CoDE(3) 0007 

t CODE(9) 001 

I CODE(IO) 0011 

I CoDE(I ) 0012 

I CoDE(12) oi3 

I CoDEi3) 0 01q 

1 CODEflq) 0oi 

I CnDE(IS) 0O01 

I CnOE(16) 0017 

COMMA 

UPARRW 

BCKSLH 

QUESMK 

I 

I 

I 

I 

I CnOE(17) 0020 

I CnDE(18) 0021 

I CoDE(19) 0022 

I CoDE(20) 0023 

DEFINITION
 

FIELD DESIGNATOR INDICATING
 
AN ALPHNUMERIC NAME (=If
 

FIELD DESIGNATOR INDICATING
 
A REAL NUMBER (a2)
 

FIELD DESIGNATOR INDICATING
 
AN INTEGER NUMbER (x3)
 

FIELD DESIGNATOR INOICATIN?
 
A DOUBLE PRECISION NUMBER
 

(s'4) 
FIELD DESIGNATOR INDICATING
 
THE END OF THE INPUT STATE-
MENT (RS) 

FIELD DESIGNATOR INDICATING
 
A HOLLERITH VALUE 1.6)
 

FIELD DESIGNATOR INDICATING
 
AN OCTAL NUMbER (s7)
 

FIELD DESIGNATOR INDICATING 
A LEFT PARENTHESIS =}8) 

FIELD DESIGNATOR INDICATING 
A RIGHT PARENTHESIb (=9) 

FIELD DESIGNATOR INDICATING 
A DOLLAR SIGN, 5, (.10) 

FIELD DESINATOR INDICATING 
AN AT SIGN, @I, (mII) 

FiELU DESIGNATOR INDICATING 
A PER CENT SIGN, %, A=12)
 

FIELD DESINATOR INDICATING
 
A COLON, :9 (=13)
 

FIELD DESIGNATOR INDICATING 
AN APOSTOPHE, ', (ai'i 

FIELD DESIGNATOR INDICATING 
AN EQUALS SIGN, as (=15)
 

FIELD DESIGNATOR INDICATING
 
A MINUS SIGN OR A HYPHEN, -. 

I=16) 

FIELD DESIGNATOR INDICATING
 
A COMMA (=17)
 

FIELD DESIGNATOR INDICATING
 
AN UP-ARROW.4 9 I11s)
 

FIELD DESIGNATOR INDICATING
 
A BACK-SLASH, \, (19)
 

FIELD DESIGNATOR INDILATING
 

A QUESTION MARKo ?o (=20)
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IODUoB]TY OF THE 

ORIGINAL PAGE IS POOR 



VARS 


PLUS 


ASTSK I 


LBSIGN 


SLASH 


SUBS 


REPEAT 


TYPE DIM LOc RELADO 

I I CnDE(2I) 0 0 2q 

I CoDE(22) 0O02 

I I LoDE(23) 0026 

I I LnDE(2 ) 0027 

o
CODE(2S) T CODEt32) NOT 

I I CoDE(33) 0OqO 


LODE(3q) TO CODE(42) NOT 

I I CoDE(43) 0052 


DEFiNITION
 

FIELD DESIGNATOR INDICATING
 
A PLUS SIGN, +'s (=21)
 
FIELD DESIGNATOR INDICATING
 

AN ASTERISK, s, (=22)
 
FIELD DESIGNATOR INDICATING
 
A POUND SIGN, , C=23)
 
FIELJ DESIGNATOR 'INDICATING
 

A SLASH. /. (=2)
 
CURRENTLY USED
 

FIELD DESIGNATOR INDICATING
 
A SUBSCRIPT FIELU (w33)
 
CURRENTLY USED
 

FIELD DESIGNATOR INDICATING
 
A REPEAT GROUP (sq3)
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COMMON 	/MOBUFF/ ALLOCATION
 

VARB TYPE DIM 

MDLEN I I 

BDATA I I 

DSIZE I I 

WORDS 4 TO 9 OF 

WBUF I MoLEN 

DEFINITION
RELADD 


oODO LENGTH (IN wuRDS) OF THE
 
WORKING BUFFLR (fBUF)
 

cool SUBSCRIP.T (ONE ORI(uIN) FROM
 

BEGINNING OF WORKING BuFFER
 
(wBUF) 	TO BEGINNING OF ITS
 

DATA AREA (I.E- PORTION OF
 

WBUF WHICH GROWS UP FROM
 

THE BOTTOM)
 

0002 	 TOTAL NUMBER OF WORDS OF THE
 
WORKING BUFFER (OBUF) WHICH
 
ARE CURRENTLY IN USE, THE
 

WORKING BUFFER IS DIVIDEU
 
INTO TWO AREAS OF DATA -. ONE
 

AT THE TOP AND ONE AT THE
 
BOTTOM. DSIZE 15 THE TOTAL
 
SIZE OF THESE TWO AREAS.
 

/MDBUFF/ ARE NOT USLD
 

DOll WORKING BUFFER OF MOLEN WORDS
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